摘要
探讨了在局部分数阶导数定义下的混合超级半爱因斯坦流形。得出若干结论:某类维数为nα(n≥3)的共形平坦混合超级半爱因斯坦分形流形可以局部等距浸入到分形空间R(n+1)α中;生成元为平行向量场的混合超级半爱因斯坦分形流形的若干定理;混合超级半爱因斯坦分形流形不存在恒为0的共形killing向量场,存在投影killing向量场的一个充分条件等。
In the sense of local fractional derivative,some theorems of mixed super semi-Einstein manifold are discussed.For example,a kind of conformal flat mixed super complex semi-Einstein manifold of dimension can be immersed in fractal space locally,and some theorems of mixed super semi-Einstein manifold whose generators is parallel vector field are discussed.There is not only no conformal killing vector field of constant 0 but also no sufficient condition for projective killing vector field on mixed super semi-Einstein manifolds.
作者
杨永举
张振宇
王学强
YANG Yongju;ZHANG Zhenyu;WANG Xueqiang(School of Mathematics and Statistics,Nanyang Normal University,Nanyang 473061,China;Huangqiao Primary School,Raoliang Town,Sheqi 473300,China)
出处
《南阳师范学院学报》
CAS
2023年第6期35-41,共7页
Journal of Nanyang Normal University
基金
河南省自然科学基金(222300420507)
河南省教师教育课程改革研究重点项目(2021-JSJYZD-027)
河南省高等学校重点科研项目(21A110018)。
关键词
混合超级半爱因斯坦流形
共形平坦流形
局部共形凯莱流形
局部分数阶导数
mixed super quasi-Einstein manifolds
conformally flat manifold
locally conformal khler manifold
local fractal derivative