期刊文献+

多传感器系统的偏差补偿和状态估计

Bias compensation and state estimation for multi-sensor systems
下载PDF
导出
摘要 在多传感器目标跟踪系统中,偏差补偿对于正确的数据融合至关重要,消除异步多传感器的偏差是多传感器精确数据融合的基础。针对量测存在时间偏差和系统偏差的多传感器系统,提出一种新的多传感器误差偏移估计方法。首先,推导并计算了时间偏移伪测量方程,以获得相对时间偏移估计;其次将传感器系统偏差与目标状态相结合以获得增强状态向量,并建立了增强状态模型;最后,设计了一种基于扩展卡尔曼滤波的目标状态与传感器系统偏差扩维联合估计算法。实验结果表明,在量测存在时间偏差和系统偏差的情况下,所提算法可以获得相对时间偏移的无偏估计,同时能够有效地解决带有系统误差的状态估计问题。 In multisensor target tracking system,deviation compensation was very important for correct data fusion.Eliminating the deviation of asynchronous multisensor was the basis of accurate multisensor data fusion.A new method of multisensor error offset estimation was proposed for multisensor systems with time bias and system bias.Firstly,the pseudo measurement equation of time migration was derived and calculated to obtain the estimation of relative time migration;Secondly,the sensor system bias was combined with the target state to obtain the enhanced state vector,and the enhanced state model was established.Finally,a joint estimation algorithm of target state and sensor system deviation based on extended Kalman filter was designed.Experimental results showed that the proposed algorithm could obtain unbiased estimation of relative time offset and effectively solve the problem of state estimation with systematic error in the presence of time bias and system bias in the measurement.
作者 杨权 YANG Quan(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,Yunnan,China)
出处 《农业装备与车辆工程》 2023年第11期159-162,共4页 Agricultural Equipment & Vehicle Engineering
关键词 多传感器 扩展卡尔曼滤波 运动状态估计 时延估计 目标跟踪 multi sensor extended Kalman filter motion state estimation time delay estimation target tracking
  • 相关文献

参考文献3

二级参考文献31

  • 1宋强,何友,杨俭.基于UKF的目标状态与系统偏差的联合估计算法[J].弹箭与制导学报,2007,27(3):311-313. 被引量:6
  • 2Bar-shalom,Y,Fortmann,T,E.Tracking and data association[M].New York,Academic press,1988.
  • 3J J Burke.The SAGE real time quality control function and its interface with BUIC Ⅱ/BUIC Ⅲ[R].MITRE Corporation Technical Report,No.308,November 1996.
  • 4M P Dana.Registration:a prerequisite for multiple sensor tracking.In multitarget multisensor tracking:advanced applications[M].Y.Bar-Shalom Ed.Artech House,Norwood,MA,1990.
  • 5Leung H,Blanchett M.A least square fusion of multiple radar data[A].Proceedings of RADAR 1994[C].Paris,1994.
  • 6Simon J Julier,Jeffrey K Uhlmann.A new extension of the Kalman filter to nonlinear systems[A].SPIE[C].1997,3068:182-193.
  • 7Simon J Julier,Jeffrey K Uhlmann.A new method for the nonlinear transformation of means and covariance's in filters and estimators[J].IEEE Trans.on AC,2000,45(3):477-482.
  • 8Bar-shalom,Y,Fortmarm,TE.Tracking and data association[M].New York.Academic Press,1988.
  • 9J J Burke.The SAGE real time quality control function and its interface with BUIC Ⅱ/BUIC Ⅲ[R].MITRE Corporation Technical Report,No.308,November 1996.
  • 10M P Dana.Registration:A prerequisite for multiple sensor tracking in multitarget-multisensor tracking of advanced applications[M].Artech House,Norwood,MA,1990.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部