摘要
光谱分析技术是分析化学中常用的方法之一,也广泛应用于中药分析等领域.本文用函数型数据分析的方法分析光谱数据,研究针对光谱数据的异常检测方法,挑选出异常(离群)的样本.基于现有方法,我们提出“欧加深度检测方法”.数值模拟结果显示,欧加深度检测方法能较好地挑选出异常情况的样本.本文将欧加深度检测方法和三种已有方法应用于分析73剂中药六混液光谱数据,结果显示,欧加深度方法能够检测出全部6剂不合格样本,有较好的应用前景.
Currently,spectroscopy technology is widely used in traditional Chinese medicine analysis.In this paper,from the functional data analysis perspective,we study outlier detection methods for spectral data,detect outliers,and propose the“Oja depth detection method”.Sim-ulation studies demonstrate the advantages of the Oja depth detection method.We compare the Oja depth detection method with three existing methods on a Chinese medicine spectral data of 73-dose six-mixture liquid.The results show the proposed Oja depth method is able to detect all six unqualified samples and has the highest accuracy.
作者
穆婉莹
王心怡
冯峥晖
MU Wanying;WANG Xinyi;FENG Zhenghui(School of Economics,Xiamen University,Xiamen,361005,China;The Wang Yanan Institute for Studies in Economics,Xiamen University,Xiamen,361005,China;School of Science,Harbin Institute of Technology,Shenzhen,518055,China)
出处
《应用概率统计》
CSCD
北大核心
2023年第5期667-681,共15页
Chinese Journal of Applied Probability and Statistics
基金
supported by National Natural Science Foundation of China (Grant No. 11871409)。