摘要
首先,基于Black-Scholes股票价格模型,通过将资产回报率和波动率分别参数化为漂移网络和扩散网络,建立神经随机微分方程(NSDE)模型;其次,在实证分析中以标的资产为单只股票的期权作为研究对象,采用真实的股票数据进行网络训练和测试,实验结果表明,NSDE模型能克服Black-Scholes模型常数性假设的缺陷;最后,对于期权标的资产价格不可观测的情况,提出可以将任意一个目标期权的价格和一个已知期权的价格约束在其风险中性等价鞅测度的Wasserstein距离内,并在理论上证明该方法.
Firstly,based on the Black-Scholes stock price model,the neural stochastic differential equation(NSDE)model was established by parameterizing the asset return rate and volatility as a drift network and a diffusion network,respectively.Secondly,in the empirical analysis,the underlying asset as a single stock option was used as the research object,and real stock data was used for the network training and testing.The experimental results show that the NSDE model can overcome the defects of the constant assumption of the Black-Scholes model.Finally,for the case where the price of the underlying asset of the option was unobservable,we proposed that the price of any target option and the price of a known option could be constrained within the Wasserstein distance of their risk-neutral equivalent martingale measure,and theoretically proved the method.
作者
季鑫缘
董建涛
陶浩
JI Xinyuan;DONG Jiantao;TAO Hao(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China;Ceyear Technologies Co.,Ltd.,Qingdao 266555,Shandong Province,China;School of Cyber Engineering,Xidian University,Xi’an 710126,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2023年第6期1324-1332,共9页
Journal of Jilin University:Science Edition
基金
陕西省杰出青年科学基金(批准号:2023-JC-JQ-05)。