摘要
基于国控监测站点数据,采用回归分析法、反距离加权法分析深圳市2022年主要大气污染物时空分布特征及成因。结果表明:污染物月变化呈现以下特征:O_(3)、PM_(2.5)、PM_(10)呈“多峰多谷”特征,NO_(2)呈“中间低、两端高”特征。污染物季节变化呈现以下特征:PM_(2.5)、PM_(10)、NO_(2)、SO_(2)、CO呈“秋季>春季>夏季>冬季”特征,O_(3)呈“夏季≈春季>秋季>冬季”特征。污染物空间分布呈以下特征:PM_(2.5)、PM_(10)、NO_(2)总体呈“西高东低”特征;O_(3)在春夏两季呈“西高东低”特征,秋冬两季呈“东高西低”特征。污染物相关性方面:SO_(2)与O_(3)、PM_(2.5)、PM_(10)、NO_(2)、CO无显著相关性;O_(3)与PM_(2.5)、PM_(10)、NO_(2)、CO均具有负相关性,PM_(2.5)、PM_(10)、NO_(2)、CO彼此间具有正相关性。气象条件、工业企业污染物排放、工地和道路扬尘排放、港口船舶和机动车尾气排放是影响大气污染物排放的主要因素。
Based on the data of state-controlled monitoring sites,the spatiotemporal distribution characteristics and causes of major air pollutants in Shenzhen in 2022 were analyzed by regression analysis and inverse distance weighting method.The results showed that the monthly variation of pollutants showed the following characteristics:O_(3),PM_(2.5)and PM_(10)showed the characteristics of“multi-peak and valley”,and NO_(2)showed the characteristics of“low in the middle and high at both ends”.The seasonal changes of pollutants showed the following characteristics:PM_(2.5),PM_(10),NO_(2),SO_(2)and CO showed the characteristics of“autumn>spring>summer>winter”,and O_(3)showed“summer≈spring>autumn>Winter”feature.The spatial distribution of pollutants showed the following characteristics:PM_(2.5),PM_(10)and NO_(2)were generally characterized by“high in the west and low in the east”;O_(3)is characterized by“high in the west and low in the east”in spring and summer,and“high in the east and low in the west”in autumn and winter.Correlation of pollutants:SO_(2)had no significant correlation with O_(3),PM_(2.5),PM_(10),NO_(2)and CO;O_(3)had negative correlations with PM_(2.5),PM_(10),NO_(2)and CO,and PM_(2.5),PM_(10),NO_(2)and CO had positive correlations with each other.Meteorological conditions,pollutant emissions from industrial enterprises,dust emissions from construction sites and roads,and emissions from port ships and motor vehicles are the main factors affecting air pollutant emissions.
作者
吴伟业
刘小彬
Wu Weiye;Liu Xiaobin(Shenzhen Academy of Environmental Sciences,Shenzhen 518001;Shenzhen ZTJC Environmental Protection Consulting Co.,Ltd.,Shenzhen 518057,China)
出处
《广东化工》
CAS
2023年第22期111-114,125,共5页
Guangdong Chemical Industry
关键词
深圳
大气污染物
时空分布
成因
相关分析
Shenzhen
air pollutants
spatiotemporal distribution
genesis
correlation analysis