摘要
脉冲耦合神经网络模型参数众多,在应用时通常根据经验或实验设置。针对模型参数影响应用等问题,采用群体智能优化算法PSO优化简单脉冲耦合神经网络模型的关键参数,如耦合系数、时间衰减因子和脉冲输出的乘积系数。通过仿真实验,评价智能优化算法学习模型参数的有效性,比较分析了不同参数PCNN模型在图像分割中获得的轮廓、细节和纹理等存在差异性。
The numerous parameters of the pulse coupled neural network model affects the application,and the researchers usually set them according to experience or experiment.To relieve this problem,the key parameters of the simple pulse coupled neural network model,such as coupling coefficient,time attenuation factor,product coefficient of pulse output,are optimized by swarm intelligent optimization algorithm PSO.Through experiments,the advantage of PSO optimized PCNN model in the field of image segmentation is verified,and the differences of contours,details and textures obtained by different parameter PCNN models are compared and analyzed.
作者
杨旭
何鸿宇
李金锁
廖源
周同驰
YANG Xu;HE Hongyu;LI Jinsuo;LIAO Yuan;ZHOU Tongchi(Things Application Engineering Technology Research Center of Henan Industrial Internet,Nanyang 473005,China;Henan Institute of University and Technology,Nanyang 473005,China;Zhongyuan University of Technology,Zhengzhou 451191,China)
出处
《机械与电子》
2023年第11期43-48,共6页
Machinery & Electronics
基金
教育部第三批"云数融合科教创新"基金项目(2018A10004)
河南省高校学校重点科研项目(20B120004)
中国纺织工业联合会指导项目(2018107)。
关键词
粒子群优化
脉冲耦合神经网络
图像分割
性能分析
particle swarm optimization
pulse-coupled neural network
image segmentation
performance analysis