摘要
针对航天器遥测数据异常检测时先验知识缺失、难以进行有监督条件下机器学习的问题,提出一种融合注意力机制的航天器信号智能异常检测算法。首先,通过注意力机制捕捉航天器遥测数据长距离特征,分析注意力关系矩阵为异常溯源提供指导。其次,采用堆叠自动编码器压缩数据维度并基于此重建输入信号,利用输入信号与重建信号间的残差获取误差重构序列。然后,基于窗口阈值法标记误差重构序列异常索引,实现航天器遥测信号异常检测。最后,通过多通道航天器遥测信号算例验证算法在提高航天器遥测信号异常检测性能与可解释能力的有效性。
Anomaly detection of spacecraft telemetry data by supervised machine learning is a challenging task due to the lack of priori knowledge.A spacecraft signal intelligent anomaly detection algorithm integra⁃ting with attention mechanism is proposed for solution.Firstly,the long⁃distance characteristics of space⁃craft telemetry data are captured by attention mechanism,and an instruction is provided for anomaly trac⁃ing in the attention relationship matrix.Then,the stacked auto⁃encoder compresses the data dimension and reassembles the input signal to obtain the error reconstruction sequence.Furthermore,the anomaly indexes of the error reconstruction sequence are marked by the window threshold method to realize the anomaly detec⁃tion of the spacecraft telemetry signal.Finally,the effectiveness of the proposed algorithm in terms of impro⁃ving the anomaly detection performance and interpretability of spacecraft telemetry signals is verified by u⁃sing a multi⁃channel spacecraft telemetry signal example.
作者
郭鹏飞
魏才盛
殷泽阳
陈琪锋
Guo Pengfei;Wei Caisheng;Yin Zeyang;Chen Qifeng(School of Automation,Central South University,Changsha 410083,China)
出处
《航天控制》
CSCD
北大核心
2023年第5期80-87,共8页
Aerospace Control
基金
国家重点研发计划(2021YFA0717100)
湖南省自然科学基金优青项目(2022JJ2008)
中南大学创新驱动计划项目(2023CXQD066)。
关键词
航天器
异常检测
神经网络
注意力机制
Spacecraft
Anomaly detection
Neural network
Attention mechanism