摘要
在考虑压力荷载、温度荷载、压力/温度耦合荷载3种工况的前提下,分别建立了不同内径的接管部分有限元模型,分析了特种耐酸耐温耐压砖和Asplit HB胶泥在3种工况及不同接管管口内径下接管应力状态的三向应力分布规律,明确了接管管口在工作过程中各层结构的危险区域。结果表明:对于特种耐酸耐温耐压砖,管口半径越大,在压力荷载作用下,其径向、环向最大拉应力越大;在温度荷载作用下,其径向、轴向最大拉应力越大;在压力/温度耦合荷载作用下,其三向最大拉应力均越大。对于Asplit HB胶泥,管口半径越大,在压力荷载作用下,其轴向最大拉应力随着管口半径的增大而增大。在温度荷载作用下,其环向最大拉应力随着管口半径的增大而增大,轴向相反,最大拉应力随着管口半径的增大而减小。在压力/温度耦合荷载作用下,径向最大拉应力随着管口半径的增大而增大。
By taking the three working loads into account,namely pressure,temperature and pres-sure/temperature coupling,several finite element models for pipe parts with different inner diameters were constructed respectively,and then the triaxial distribution of pipe stresses of the special acid-,temperature-and pressure-resistant brick and Asplit HB cement was analyzed by different inner diameters of pipe nozzle under three working conditions.The dangerous degree of different positions of the pipe nozzle during working process is clarified.The results show that for the special acid-,temperature-and pressure-resis-tant brick,the larger the radius of the pipe opening,the larger the maximum tensile stress in the radial and annular direction under the action of pressure load.Under the action of temperature load,the maxi-mum tensile stress in radial and axial direction increases.Under the coupled pressure/temperature load,the maximum tensile stress in all three directions increases.For Asplit HB cement,the maximum axial tensile stress increases with the increase of the radius of the pipe mouth under pressure load.Under the action of temperature load,the maximum tensile stress in the annular direction increases with the in-crease of the tube orifice radius,while in the axial direction,the maximum tensile stress decreases with the increase of the tube orifice radius.Under the pressure/temperature coupling load,the maximum radial tensile stress increases with the increase of the orifice radius.
作者
何彬彬
侯宇
吴子轩
李子立
李桃
颜建伟
HE Binbin;HOU Yu;WU Zixuan;LI Zili;LI Tao;YAN Jianwei(State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Assurance,East China Jiaotong University,Nanchang 330013,China;Jiangxi Pingxiang Longfa Industrial Co.,Ltd.,Pingxiang 337100,China)
出处
《中国腐蚀与防护学报》
CAS
CSCD
北大核心
2023年第6期1399-1406,共8页
Journal of Chinese Society For Corrosion and Protection
基金
国家自然科学基金(12072112)
江西省杰出青年科学基金(20202ACBL214014)。