期刊文献+

基于PID型迭代学习控制的列车自动驾驶曲线跟踪算法研究 被引量:1

Curve tracking algorithm for automatic train operation based on PID-type iterative learning control
下载PDF
导出
摘要 针对基于比例微分积分(PID,Proportional Integral Derivative)控制的列车速度跟踪算法在跟踪进度、收敛性和稳定性等方面存在的不足,提出一种基于PID型迭代学习控制(ILC,Iterative Learning Control)的列车自动驾驶(ATO,Automatic Train Operation)曲线跟踪算法。通过迭代学习控制,优化跟踪过程,减小跟踪误差,缩短收敛时间;设置典型场景对所设计的算法进行仿真试验,并将仿真结果与基于PID控制算法的跟踪效果进行对比分析。结果表明,PID型ILC算法对列车目标速度和目标位移具有较高的跟踪精度,能够在有限的迭代次数内实现精确跟踪,验证了所提算法的有效性。 To address the shortcomings of train speed tracking algorithms based on proportional integral derivative(PID) control in tracking progress,convergence,and stability,this paper oriposed a PID based iterative learning control(ILC) based automatic train operation(ATO) curve tracking algorithm.The paper optimized the tracking process through iterative learning control,reduced tracking errors,and shorten convergence time,set up typical scenarios to conduct simulation experiments on the designed algorithm,and compared and analyzed the simulation results with the tracking effect of the PID control algorithm.The results show that the PID ILC algorithm has high tracking accuracy for train target speed and target displacement,and can achieve precise tracking within a limited number of iterations,proving the effectiveness of the proposed algorithm.
作者 王锡奎 黄克勇 李亚楠 WANG Xikui;HUANG Keyong;LI Yanan(School of Communication and Signal,Nanjing Institute of Railway Technology,Nanjing 210031,China;Cloud Network Operation Center,United Network Communications Co.,LTD.Jiangsu Branch,Nanjing 210008,China)
出处 《铁路计算机应用》 2023年第10期1-6,共6页 Railway Computer Application
基金 江苏省高等学校基础科学(自然科学)面上项目(21KJD580001) 南京铁道职业技术学院优秀科技创新团队(CXTD2022003)。
关键词 比例微分积分(PID) 迭代学习控制(ILC) 列车自动驾驶(ATO) 曲线跟踪算法 跟踪误差 Proportional Integral Derivative(PID) Iterative Learning Control(ILC) Automatic Train Operation(ATO) curve tracking algorithm tracking error
  • 相关文献

参考文献8

二级参考文献80

共引文献71

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部