期刊文献+

基于CEEMDAN-CNN-BiLSTM的行星齿轮箱故障诊断分析

Analysis of Planetary Gearbox Fault Diagnosis Based on CEEMDAN-CNN-BiLSTM
原文传递
导出
摘要 阐述一种基于自适应噪声完备集合经验模态分解(CEEMDAN)相关系数、卷积神经网络(CNN)以及双向长短时记忆网络(BiLSTM)的行星齿轮箱故障诊断方法,用以解决行星齿轮箱振动信号受噪声干扰难以有效提取故障特征的问题,提高故障诊断的准确率。 This paper expounds a fault diagnosis method for planetary gearbox based on adaptive noise complete set empirical mode decomposition(CEEMDAN)correlation coefficient,convolutional neural network(CNN),and bidirectional long short time memory network(BiLSTM),to solve the problem of difficulty in effectively extracting fault features from planetary gearbox vibration signals due to noise interference and improve the accuracy of fault diagnosis.
作者 徐洁 XU Jie(Shanxi Vocational College of Finance,Shanxi 030001,China)
出处 《电子技术(上海)》 2023年第9期414-415,共2页 Electronic Technology
关键词 卷积神经网络 双向长短时记忆网络 故障诊断 CNN bidirectional long short-term memory network fault diagnosis
  • 相关文献

参考文献3

二级参考文献21

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部