期刊文献+

Single Peak Solutions for a Schr?dinger Equation with Variable Exponent

原文传递
导出
摘要 We study the following Schr?dinger equation with variable exponent−Δu+u=u^(p+∈a)(x),u>0 in R^(N),where∈>0,1<p<N+2/N−2,a(x)∈C^(1)(R^(N))∩L^(∞)(R^(N)),N≥3.Under certain assumptions on a vector field related to a(x),we use the Lyapunov–Schmidt reduction to show the existence of single peak solutions to the above problem.We also obtain local uniqueness and exact multiplicity results for this problem by the Pohozaev type identity.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第11期2207-2218,共12页 数学学报(英文版)
基金 National Natural Science Foundation of China(Grant Nos.11971147 and12371111) The second author is partially supported by National Natural Science Foundation of China(Grant No.11831009) the Fundamental Research Funds for the Central Universities(Grant Nos.KJ02072020-0319,CCNU22LJ002) The third author is supported by National Natural Science Foundation of China(Grant No.12201232)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部