期刊文献+

Classification of Proper Holomorphic Mappings between Hartogs Domains over Homogeneous Siegel Domains

原文传递
导出
摘要 The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo obtained the rigidity result that proper holomorphic mappings between two equidimensional domains D_(N,s)and D'_(N',s')are biholomorphisms for N≥2.In this article,we find a counter-example to show that the rigidity result is not true for D_(1,s)and obtain a classification of proper holomorphic mappings between D_(1,s)and D'_(1,s').
作者 Lei WANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第11期2259-2274,共16页 数学学报(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.11801187,11871233 and 11871380)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部