期刊文献+

磁修正加权EKF多传感器组合导航算法研究

Research on Magnetic Modified Weighted EKF Multi-sensor Combined Navigation Algorithm
下载PDF
导出
摘要 针对移动机器人在运动过程中定位导航误差不确定度高的问题,研究了基于惯性测量元件(IMU)、冗余磁导航传感器(MGS)以及射频识别传感器(RFID)相结合的移动机器人定位组合导航系统,提出了一种磁修正加权扩展卡尔曼滤波(EKF)的移动机器人混合式多传感器融合算法。该算法以降低定位导航系统的不确定度为目标,通过对多传感器提供的冗余数据进行融合,达到对移动机器人运动状态的估计。通过对冗余多传感器数据的仿真分析,磁修正加权EKF相比于传统的EKF,使滤波后的定位导航数据不确定度降低了42.3%,并且修正了系统的累计误差,验证了移动机器人冗余组合导航算法的可行性和有效性。 Aiming at the high uncertainty of positioning and navigation error of mobile robot in the process of moving,a mobile robot positioning and integrated navigation system based on inertial measurement element(IMU),redundant magnetic navigation sensor(MGS)and radio frequency identification sensor(RFID)was studied.A magnetic modified weighted extended Kalman filter(EKF)hybrid multi-sensor fusion algorithm for mobile robots was proposed.The algorithm aimed to reduce the uncertainty of the positioning and navigation system,and achieved the estimation of the motion state of the mobile robot through the fusion of redundant data provided by multiple sensors.Through the simulation analysis of redundant multi-sensor data,compared with the traditional EKF,the uncertainty of the filtered positioning and navigation data is reduced by 42.3%,and the cumulative errors of the system are corrected,which verifies the feasibility and effectiveness of the redundant integrated navigation algorithm for mobile robots.
作者 李亚晶 岳义 韦宝琛 崔国华 刘国兴 LI Yajing;YUE Yi;WEI Baochen;CUI Guohua;LIU Guoxing(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2023年第10期107-113,共7页 Instrument Technique and Sensor
基金 国家自然科学基金(51905337) 上海市科委地方院校能力建设项目(22010501700)。
关键词 移动机器人 组合导航 数据融合 加权EKF 磁定位修正 mobile robots combined navigation data fusion weighted EKF magnetic positioning correction
  • 相关文献

参考文献6

二级参考文献40

  • 1张东,吴晓琳.基于分组平均加权算法实现遥测数据融合[J].战术导弹技术,2010(1):108-109. 被引量:5
  • 2周玉芬,徐忠伟,高锡俊.分布式传感器数据融合技术[J].火控雷达技术,1994,23(1):37-43. 被引量:6
  • 3胡振涛,刘先省.一种改进的一致性数据融合算法[J].传感器技术,2005,24(8):65-67. 被引量:16
  • 4孙勇,景博.基于支持度的多传感器一致可靠性融合[J].传感技术学报,2005,18(3):537-539. 被引量:38
  • 5[1]Carlson N A (1988) Federated filter for fault-tolerant integrated navigation system. IEEE Positioning, Location and Navigation Symposium, Orlando.
  • 6[2]Carlson N A (1987) Federated square root filter for decentralized parallel processes. National Aerospace and Elec. Conf., NAECON, Dayton, OH.
  • 7[3]Farrell J A, Barth M (1999) The global positioning system and inertial navigation. McGraw-Hill.
  • 8[4]Gao Y, Krakiwsky E J, Abousalem M A, et al.(1993) Comparison and analysis of centralized, decentralized, and federated filters. Navigation, 40(1): 69-86
  • 9[5]Grejner-Brzezinska D A, Toth C K, Xiao Q (2000) Real-time tracking of highway linear features. GPS-INS, Salt Lake City.
  • 10[6]Salychev O, Schaffrin B (1992) New filter approaches for GPS/INS integration. 6th International Symposium on Satellite Positioning, Columbus, OH.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部