摘要
The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy employing NH_(4)PF_6 to modify the buried interface of perovskite layer((FAPbI_(3))_(0.85)(MAPbBr_(3))_(0.15) composition) in planar PSCs.After introducing NH_(4)PF_(6),the oxygen defects on the surface of SnO_(2) film are greatly restricted due to the coordinate interaction between fluorine atoms(F) in PF_(6)^(-)and undercoordinated Sn^(4+).Meanwhile,the hydrogen bonding interaction(N-H…I) between NH_(4)PF_(6) and PbI_(2) can passivate the non-radiative charge recombination sites,significantly optimizing the quality of perovskite film,as well as the charge transfer process at the SnO_(2)/perovskite interface.As a result,the NH_(4)PF_(6)-modified PSC obtains a champion power conversion efficiency(PCE) of 21.11%superior to the reference device(18.46%),and the device with an active area of 1 cm^(2) achieves a PCE as high as17.38%.Furthermore,the unencapsulated NH_(4)PF_(6)-modified PSCs show good humidity stability and retain about80% of the initial PCE after 1080 h aging at the relative humidity(RH) of 35% ± 5%.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2023年第10期3399-3409,共11页
稀有金属(英文版)
基金
financially supported by the National Natural Science Foundation of China (Nos. 22179053, 22279046 and 21905119)
the Natural Science Excellent Youth Foundation of Jiangsu Provincial (No. BK20220112)
the Six-Peak Top Talents in Jiangsu province (No. XNY066)。