期刊文献+

基于分布式降噪正交自编码器的工业过程故障检测

Industrial Process Fault Monitoring Based on Distributed Denoising Orthogonal Auto-encoder
下载PDF
导出
摘要 针对基于过程知识进行模块划分的方法,存在知识不足造成模块划分不准确以及数据中的噪声导致的过拟合影响到故障检测率的问题,提出一种变量模块划分并采用降噪正交自编码器建立分布式故障检测的方法(MBIDOAE)。首先利用互信息和最短距离的层次聚类将相关关系强的过程变量聚类,获得多个模块。然后采用降噪正交自编码器提取各模块过程变量的非线性特征构建分布式模型,引入随机噪声来增强自编码器的抗噪性并利用正交矩阵降低特征的冗余性。采用T2和SPE统计量作为故障检测指标,通过对TE过程的仿真,与PCA、AE、MBIPCA和所提MBIDOAE进行对比,验证了该方法的有效性。 Considering the fact that the inaccurate module division caused by insufficient knowledge and the over-fitting caused by the noise in data which affecting fault detection rate in the method of module division based on process knowledge,a method of variable module division and using de-noising orthogonal auto-encoder(MBIDOAE)was proposed to inplement distributed fault detection.Firstly,the process variables with strong correlation were clustered by adopting hierarchical clustering of the mutual information and the shortest distance to obtain multiple modules;then,a de-noising orthogonal auto-encoder was used to extract nonlinear features of the process variables of each module to construct a distributed model,including having random noise introduced to enhance anti-noise ability of the auto-encoder and an orthogonal matrix employed to reduce redundancy of the features;finally,the T2 and SPE statistics were used as fault detection indicators,and through simulating TE process,comparing with PCA,AE,MBIPCA and MBIDOAE proposed,the effectiveness of this method was verified.
作者 郭小萍 张玲 李元 GUO Xiao-ping;ZHANG Ling;LI Yuan(School of Information Engineering,Shenyang University of Chemical Technology)
出处 《化工自动化及仪表》 CAS 2023年第6期778-785,共8页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(批准号:61673279)资助的课题 2020年辽宁省教育厅科学研究经费项目(批准号:LJ2020021)资助的课题。
关键词 互信息 层次聚类 分布式建模 降噪正交自编码器 故障检测 冗余变量 mutual information hierarchical clustering distributed modeling de-noising orthogonal auto-encoder fault detection redundant variables
  • 相关文献

参考文献7

二级参考文献69

  • 1袁晓辉,王乘,张勇传,袁艳斌.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19. 被引量:220
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:46
  • 3赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1070
  • 5Qin S J.Statistical process monitoring: basics and beyond [J].Journal of Chemometrics,2003,17 (7/8): 480-502.
  • 6Ge Z,Song Z,Gao F.Review of recent research on data-based process monitoring [J].Industrial & Engineering Chemistry Research,2013,52 (10): 3543-3562.
  • 7Qin S J.Survey on data-driven industrial process monitoring and diagnosis [J].Annual Reviews in Control,2012,36 (2): 220-234.
  • 8Fan J,Wang Y.Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis [J].Information Sciences,2014,259: 369-379.
  • 9Lee J M,Yoo C K,Choi S W,Vanrolleghem P A,Lee I B.Nonlinear process monitoring using kernel principal component analysis [J].Chemical Engineering Science,2004,59 (1): 223-234.
  • 10Tong C,Song Y,Yan X.Distributed statistical process monitoring based on four-subspace construction and Bayesian inference [J].Industrial & Engineering Chemistry Research,2013,52 (29): 9897-9907.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部