摘要
为构建智能网联汽车(CAV)和有人驾驶汽车(HDV)混合通行情况下的交叉口通行机制与控制方法,本文提出CAV专用道条件下交叉口协同通行模型.首先,设计CAV专用道条件下的交叉口布置,对交叉口进行网格化处理,将CAV通行时隙和HDV绿灯相位对交叉口某部分网格某时段的占用统一到交叉口时空资源描述框架下;其次,建立兼顾CAV与HDV的交叉口时空网格资源分配模型,构建自适应信号灯控制算法和CAV轨迹规划算法;再次,以车辆最小延误为目标进行自适应信号灯配时优化和CAV轨迹优化;最后,选取广州某典型交叉口建立仿真实验对所提方法的有效性进行了验证.
In order to construct the traffic mechanism and control method of the intersection under the mixed traffic of connected and autonomous vehicles(CAV)and human drive vehicles(HDV),the paper proposed a cooperative traffic model for intersections under the conditions of CAV dedicated lanes.First,an intersection layout under the condition of CAV dedicated lanes is designed,and the intersection space is grid-processed.The occupancy of a particular part of the grid at the intersection for a certain period by the CAV and HDV is unified under the intersection space-time resource description framework.Second,a space-time resource allocation model is established considering both CAV and HDV.An adaptive signal light control algorithm and a CAV trajectory planning algorithm are proposed.Third,adaptive signal light timing and CAV trajectory are optimized to achieve minimum vehicle delay.Finally,the effectiveness of the proposed method is verified by selecting a typical intersection in Guangzhou to establish a simulation experiment.
作者
黄鑫
林培群
裴明阳
谭满春
冉斌
HUANG Xin;LIN Pei-qun;PEI Ming-yang;TAN Man-chun;RAN Bin(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou Guangdong 510640,China;Department of Architecture and Civil Engineering,Chalmers University of Technology,Gothenburg 41296,Sweden;College of Information Science and Technology,Jinan University,Guangzhou Guangdong 510632,China;School of Civil and Environmental Engineering,University of Wisconsin-Madison,Madison Wisconsin 53706,USA)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2023年第10期1851-1862,共12页
Control Theory & Applications
基金
国家自然科学基金项目(52072130)
广东省自然科学基金项目(2021A1515010409)资助。
关键词
交通工程
混合交通流控制
协同通行
交叉口控制
智能网联车
微观交通仿真
traffic engineering
mixed traffic flow control
cooperative traffic
intersection control
connected and autonomous vehicle
microscopic traffic simulation