期刊文献+

Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning

下载PDF
导出
摘要 To address the problem of the low accuracy of transverse velocity field measurements for small targets in highresolution solar images,we proposed a novel velocity field measurement method for high-resolution solar images based on PWCNet.This method transforms the transverse velocity field measurements into an optical flow field prediction problem.We evaluated the performance of the proposed method using the Hαand TiO data sets obtained from New Vacuum Solar Telescope observations.The experimental results show that our method effectively predicts the optical flow of small targets in images compared with several typical machine-and deeplearning methods.On the Hαdata set,the proposed method improves the image structure similarity from 0.9182 to0.9587 and reduces the mean of residuals from 24.9931 to 15.2818;on the TiO data set,the proposed method improves the image structure similarity from 0.9289 to 0.9628 and reduces the mean of residuals from 25.9908 to17.0194.The optical flow predicted using the proposed method can provide accurate data for the atmospheric motion information of solar images.The code implementing the proposed method is available on https://github.com/lygmsy123/transverse-velocity-field-measurement.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第6期86-97,共12页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.12063002,12163004,and 12073077。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部