摘要
由于定位设备误差、非机动车骑行习惯等因素的影响,骑行轨迹存在数据异常与定位信息缺失等质量问题,为骑行地图推断和骑行路径规划等基于轨迹的应用带来了极大挑战.为解决上述问题,提出了一个面向骑行地图推断的轨迹数据质量提升框架,包括网格索引构建、异常轨迹点的消除、徘徊轨迹段的消除、违章轨迹段的消除、漂移轨迹段的校准以及缺失轨迹的恢复等.在真实非机动车骑行轨迹数据集上进行了对比实验和消融实验,实验结果验证了所提方案对于提升骑行地图推断的精度优于现有方法.
The trajectory optimization of cycling is hindered by the errors of positioning equipment,riding habits of non-motor vehicles,and other factors.It leads to quality problems,such as abnormal data and missing positioning information in the riding trajectory,impacting the application of trajectory-based riding-map inference and riding-path planning.To solve these problems,this paper creates a framework for improving the quality of cycling-trajectory data,based on the construction of a grid index,screening of abnormal trajectory points,elimination of wandering trajectory segments,elimination of illegal trajectory segments,calibration of drift trajectory segments,and recovery of missing trajectory.Comparative and ablation experiments are conducted by using a real non-motor-vehicle cycling-trajectory dataset.The experimental results verify that the proposed method improves the accuracy of cycling-map inference.
作者
陈杰
沈文怡
吴问宇
毛嘉莉
CHEN Jie;SHEN Wenyi;WU Wenyu;MAO Jiai(School of Data Science and Engineering,East China Normal University,Shanghai 200062,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期14-27,共14页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(62072180)。
关键词
徘徊轨迹
漂移轨迹
轨迹恢复
wandering trajectory
drift trajectory
trajectory recovery