期刊文献+

基于大数据+SpringBoot技术的全国传染病数据分析可视化平台

下载PDF
导出
摘要 随着互联网时代的逐步发展,越来越多的人开始关注互联网上的热点新闻、时事政治等官方权威数据,越来越多的网民也开始在互联网上发布自己的日常生活、视频评论等琐事数据。互联网产生的大量数据无法通过普通的软件工具达到分析处理的目的,大数据处理技术于是应运而生。将大量数据收集、存储在支持PB级别的数据库中,通过Map Reduce、Spark等大数据计算引擎实现对大量数据的处理分析,通过数据可视化技术将处理结果以图表形式展现在平台上,能够让所有网民清晰直观地得到了解。本文首先介绍了随着互联网的发展,大数据处理技术的应用越来越广泛。
作者 洪保刘
机构地区 徐州工程学院
出处 《数字技术与应用》 2023年第11期161-164,共4页 Digital Technology & Application
基金 江苏省高等学校大学生创新创业训练计划2022年立项项目“新冠传染病数据展示平台的设计与实现”(202211998070Y)。
  • 相关文献

参考文献5

二级参考文献120

  • 1马费成.论情报学的基本原理及理论体系构建[J].情报学报,2007,26(1):3-13. 被引量:136
  • 2Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 3Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 4Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 5Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 6Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 7Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 8Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].
  • 9Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008.29-42.
  • 10Xie J, Yin S, Ruan XJ, Ding ZY, Tian Y, Majors J, Manzanares A, Qin X. Improving MapReduce performance through data placement in heterogeneous Hadoop clusters. In: Taufer M, Rfinger G, Du ZH, eds. Proc. of the Workshop on Heterogeneity in Computing (IPDPS 2010). Atlanta: IEEE Press, 2010. 1-9. [doi: 10.1109/IPDPSW.2010.5470880].

共引文献638

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部