期刊文献+

基于数据特征的多传感器融合实时目标检测 被引量:3

Multi-sensor fusion real-time target detection based on data characteristics
下载PDF
导出
摘要 为了进一步降低目标检测出现的误检率,提出了一种基于传感器数据特征的融合目标检测算法。首先,为了减少部分离群噪声点对点云表达准确性的影响,采用统计滤波器对激光雷达原始点云进行滤波处理;其次,为了解决点云地面分割在坡度变化时,固定阈值会导致分割不理想的问题,提出了自适应坡度阈值的地面分割算法;然后,建立KD(k-dimensional)树索引,加速DBSCAN(density-based spatial clustering of applications with noise)点云聚类,基于Andrew最小凸包算法,拟合最小边界矩形,生成目标三维边界框,完成聚类后的目标点云位姿估计;最后,将激光雷达检测到的三维目标点云投影到图像上,投影边界框与图像检测的目标边界框通过IoU关联匹配,提出基于决策级的三维激光雷达与视觉图像信息融合算法。使用KITTI数据集进行的测试实验表明,提出的点云聚类平均耗时降低至173 ms,相比传统的欧氏距离聚类,准确性提升6%。搭建硬件实验平台,基于实测数据的实验结果表明,提出的融合算法在目标误检率上比YOLO v4网络降低了约10%。 This paper proposed a fusion object detection algorithm based on sensor data features to further reduce the false detection rate of target detection.Firstly,it used statistical filters to filter the original LiDAR point cloud to reduce the influence of some outlier noise points on the accuracy of point cloud expression.Then,it proposed a ground segmentation algorithm with adaptive slope threshold to solve the problem that fixed threshold would lead to unsatisfactory segmentation when the slope of point cloud ground segmentation changed.Finally,it established a KD(k-dimensional)tree index.It projected the LiDAR-detected 3D target point cloud into the image and match the projection bounding box and the image detection target bounding box by IoU association.It proposed a decision-level-based 3D LiDAR and visual image information fusion algorithm.The test results using the KITTI dataset show that the proposed fusion algorithm reduces the average time spent on point cloud clustering to 173 ms,which is 6%more accurate than the traditional Euclidean distance clustering.The experimental results based on the mea-sured data show that the proposed fusion algorithm reduces the target false detection rate by about 10%compared to the YOLO v4 network.
作者 刘晋成 唐伦 陈前斌 Liu Jincheng;Tang Lun;Chen Qianbin(School of Communication&Information Engineering,Chongqing University of Posts&Telecommunications,Chongqing 400065,China;Key Laboratory of Mobile Communication Technology,Chongqing University of Posts&Telecommunications,Chongqing 400065,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第11期3456-3461,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(62071078) 重庆市教委科学技术研究项目(KJZD-M201800601) 四川省科技计划资助项目(2021YFQ0053)。
关键词 地面分割 点云聚类 激光雷达 融合 ground segmentation point cloud clustering LiDAR fusion
  • 相关文献

参考文献3

二级参考文献25

  • 1Borges G, Aldon M. Line Extraction in 2D Range Images for Mo- bile Robotics [ J ]. Journal of Intelligent and Robotic Systems, 2004,40 : 267 - 297.
  • 2Yilmaz A, Javed O, Shah M. Object Tracking: A Survey[J]. ACM Computing Surveys,2006,38(4).
  • 3Veenman C, Reindcrs M, Backer E. Resolving Motion Correspon- dence for Densely Moving Points [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence ,2001,23 (1) :54-72.
  • 4Reid D. An Mgorithm for Tracking Multiple Targets[J]. IEEE Trans- actions on Automatic Control, 1979,24 (6) : 843-854.
  • 5Ramer U. An Iterative Procedure for the Polygonal Approximation of Plane Curves [ J]. Computer Graphics and Image Processing, 1972,1 (3) :244-256.
  • 6Douglas D, Peucker T. Algorithms for the Reduction of the Num- ber of Points Required to Represent a Digitized Line or Its Carica- ture [ J]. The Canadian Cartographer, 1973,10 ( 2 ) : 112-122.
  • 7甘志梅,王春香,杨明.基于激光雷达的车辆跟踪与识别方法[J].上海交通大学学报,2009,43(6):923-926. 被引量:25
  • 8潘其坤,谢京江,谢冀江,张来明,阮鹏,杨贵龙,郭劲.非链式脉冲DF激光器增益分布特性[J].红外与激光工程,2014,43(2):360-364. 被引量:6
  • 9王洪迅,王士岩,王星,王红卫.瞬时测频系统的线性调频信号分析及改进[J].兵工学报,2014,35(8):1193-1199. 被引量:23
  • 10潘加亮,熊智,王丽娜,郁丰,赵慧,林爱军.一种简化的发射系下SINS/GPS/CNS组合导航系统无迹卡尔曼滤波算法[J].兵工学报,2015,36(3):484-491. 被引量:22

共引文献61

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部