摘要
Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol-to-CO_(2)activity at low applied potentials.Thereby,carbon-supported Ir-Bi_(2)O_(3)(Ir-Bi_(2)O_(3)/C)catalysts with highly dispersive bismuth oxide on the iridium surface are designed and prepared,which can merit splitting the ethanol C–C bond and promoting the oxidation of C1 intermediates at the bifunctional interfaces.The as-obtained Ir-Bi2O3/C catalysts show superior EOR mass activity of up to ca.2250 m A mgIr-1.Moreover,they exhibit the record lowest onset oxidation potentials(0.17–0.22 V vs.RHE)and the peak potential(ca.0.58 V vs.RHE),being 130–300 m V lower than the previous landmark noble metallic catalysts.Furthermore,an apparent C1 pathway faraday efficiency(FEC1)of 28%±5.9%at 0.5 V vs.RHE can be obtained at Ir-Bi_(2)O_(3)/C.This work might provide new insights into the new anodic EOR catalysts for increasing the power of DEFCs.
基金
supported by the National Natural Science Foundation of China(NSFC,22172121)
the Natural Science Foundation of Sichuan Province(NSFSC,2023NSFSC1076)
the Young Talent Project of State Ethnic Affairs Commission
the Fundamental Research Funds for the Central Universities(ZYN2023106),Southwest Minzu University。