期刊文献+

基于改进YOLOX-S的火灾检测方法 被引量:1

Fire detection method based on improved YOLOX-S
下载PDF
导出
摘要 针对传统火灾检测算法存在检测精度不高,检测速度慢等问题,该算法对当前目标检测领域检测效果较好的YOLOX-S算法改进,提出适合于火灾检测这一特殊领域的检测算法YOLOX-IMP.在YOLOX-S算法基础上,通过对预测头部分多尺度检测的改进,将原来的3尺度改为4尺度检测,对YOLOX-S算法的损失函数改进,在YOLOX-S预测头部分添加SENet注意力,提高火灾检测的检测精度.实验结果表明,改进后算法YOLOX-IMP精确度和mAP值分别提高了2.9%,2.3%,在检测速度未明显下降情况下,该算法火灾检测精度相比YOLOX-S算法有较大提升,证明该算法的可行性. Aiming at the problems of low detection accuracy and slow detection speed of traditional fire detection algorithm,this paper improves YOLOX-S algorithm that has good detection effect in the field of target detection and proposes a detection algorithm YOLOX-IMP which is extremely suitable for this special field of fire detection.Based on YOLOX-S algorithm,the original 3-scale detection was changed to 4-scale detection by improving the multi-scale detection of the prediction head,and the loss function of YOLOX-S algorithm was improved by adding SENet attention to the prediction head,so as to improve the detection accuracy of fire detection.The results show that the accuracy and mAP value of the improved YOLOX-IMP algorithm are improved by 2.9%and 2.3%respectively.The fire detection accuracy of the improved YOLOX-IMP algorithm is greatly improved compared with the YOLOX-S algorithm under the condition that the detection speed is not significantly decreased,which proves the feasibility of the proposed algorithm.
作者 路佩东 范菁 曲金帅 孙书魁 LU Pei-dong;FAN Jing;QU Jin-shuai;SUN Shu-kui(School of Electrical and Information Technology,Yunnan Minzu University,Kunming 650000,China;University Key Laboratory of Information and Communication on Security Backup and Recovery in Yunnan Province,Kunming 650000,China)
出处 《云南民族大学学报(自然科学版)》 CAS 2023年第6期771-778,共8页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(61540063) 云南省教育厅科学研究基金(2023Y0500)。
关键词 火灾检测 YOLOX-IMP 多尺度检测 损失函数 注意力机制SENet fire detection YOLOX-IMP multi-scale detection loss function the attentional mechanism SENet
  • 相关文献

参考文献5

二级参考文献30

共引文献147

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部