期刊文献+

基于用户关系与HCM的APP虚假用户识别 被引量:1

APP fake user identification based on user relationships and HCM
下载PDF
导出
摘要 随着移动互联网的迅速发展,APP已成为人们生活中不可或缺的一部分。同时,APP应用市场的蓬勃发展也催生APP虚假用户这一市场乱象。在这样的背景下,进行APP虚假用户识别的研究对于开发者获得最真实有效的软件使用反馈,同时帮助软件下载者了解最真实的软件使用体验具有重要的现实意义。文中提出一种基于HCM模型的APP虚假用户识别算法。首先,根据APP用户数据构建用户关系图;接着,提出一种基于异构图神经网络(HetGNN)与卷积神经网络(CNN)的联合模型来识别APP虚假用户。通过相关算法进行实验,结果证明了该算法的有效性,能够准确识别出APP虚假用户。 With the rapid development of mobile Internet,mobile APPs have become an indispensable part of people's lives.However,the booming development of the APP market has also led to fake APP users.In this context,research on identifying fake APP users is of great practical significance for developers to obtain the most authentic and effective software usage feedback and for software downloaders to understand the most authentic software usage experience.In view of this,an APP fake user identification algorithm based on the HCM(joint HetGNN and CNN⁃based model)is proposed.A user relationship graph is constructed based on the APP user data.A joint model based on heterogeneous graph neural network(HetGNN)and convolutional neural network(CNN)is proposed to identify fake APP users.Experiments were carried out by related algorithms.The experimental results show that the proposed algorithm is of effectiveness and can identify fake APP users accurately.
作者 周金泽 ZHOU Jinze(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《现代电子技术》 2023年第23期98-102,共5页 Modern Electronics Technique
关键词 APP虚假用户 异构图神经网络 卷积神经网络 联合模型 HCM模型 用户关系 APP fake user HetGNN CNN joint model HCM model user relationship
  • 相关文献

参考文献9

二级参考文献48

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2钟清流,蔡自兴.基于支持向量机的渐近式半监督式学习算法[J].计算机工程与应用,2006,42(25):19-22. 被引量:4
  • 3Jindal N,Liu B.Review spam detection[C]//Proceedings of the 16th international conference on World Wide Web,Banff,AB,Canada,May08-12,2007.New York,NY,USA:ACM,2007:1189-1190.
  • 4Jindal N,Liu B.Opinion spam and analysis[C]//Proceedings of the international conference on Web search and web data mining,California,USA,Feb 11-12,2008.New York,NY,USA:ACM,2008:219-230.
  • 5Li F,Huang M,Yang Y,et al.Learning to identify review spam[C]//Proceedings of the 22nd international joint conference on Artificial Intelligence,Barcelona,Spain,Jul 16-22,2011.Palo Alto,CA,USA:AAAI,2011:2488-2493.
  • 6Lim E,Nguyen V,Jindal N,et al.Detecting product review spammers using rating behaviors[C]//Proceedings of the 19th ACM international conference on Information and knowledge management,Toronto,ON,Canada,October 26-30,2010.New York,NY,USA:ACM,2010:939-948.
  • 7Lai C,Xu K,Lau R,et al.High-order concept associations mining and inferential language modeling for online review spam detection[C]//Data Mining Workshops(ICDMW),2010 IEEE International Conference,Sydney,NSW,Australia,Dec 13-13,2010.Washington,DC,USA:IEEE,2010:1120-1127.
  • 8Wang G,Xie S H,Liu B,et al.Review Graph Based Online Store Review Spammer Detection[C]//Proceedings of the 11th International Conference on Data Mining,Mesa,Arizona,USA,April 28-30,2011.Washington,DC,USA:IEEE,2011:1242-1247.
  • 9Mukherjee A,Kumar A,Liu B,et al.Spotting opinion spammers using behavioral footprints[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,Chicago,IL,USA,August 11-14,2013.New York,NY,USA:ACM,2013:632-640.
  • 10Liang D X,Liu X Y,Shen H.Detecting Spam Reviewers by Combing Reviewer Feature and Relationship[C]//Informative and Cybernetics for Computational Social Systems(ICCSS),2014 International Conference,Qingdao,Shandong,China,Oct 9-10 2014.Washington,DC,USA:IEEE,2014:102-107.

共引文献381

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部