期刊文献+

面向数据中心的服务器能耗模型综述

A Survey of Server Energy Consumption Models in Data Center
下载PDF
导出
摘要 伴随着云计算技术的快速发展,数据中心的服务器能耗日益激增,带来了严重的经济和环境问题,降低数据中心能耗,对缩减数据中心运营成本、实现全球“双碳”战略目标具有重要意义;因此,不同层面的服务器能耗模型构建和预估成为了近年来研究的热点;据此,从硬件、软件层面系统地总结了服务器能耗模型的相关工作;在硬件层面,对服务器的整体能耗按加法模型、基于系统利用率模型和其他模型分类;同时,还总结了服务器部件粒度的能耗模型,涵盖CPU、内存、磁盘和网络接口;在软件层面,按机器学习的类别将服务器能耗模型归纳为监督学习、非监督学习、强化学习;此外,还比较了不同能耗模型的优缺点、适用场景,展望了能耗模型的未来研究方向。 With the rapid development of cloud computing,the increasing demand for server energy consumption in data centers leads to crucial economic and environmental issues.Reducing the data center energy consumption is of great significance to save the operating cost of data centers and realize the global“double-carbon”strategic goal.Therefore,the construction and prediction of server energy consumption models at different levels become a research hotspots in recent years.Accordingly,the relevant work of server consumption models is systematically summarized from two levels of hardware and software.At the hardware level,the overall energy consumption models of the cloud server are classified from the additive models,models based on system utilization rate and other models.Meanwhile,the energy consumption models of the server components are also summarized,including the CPU,memory,disk and network interface.At the software level,the server energy consumption models are summarized according to the category of machine learning,such as supervised learning,unsupervised learning and reinforcement learning.Additionally,the advantages,shortcoming and suitable scenarios of different consumption models are also compared,which prospects the future research directions of consumption models.
作者 王东清 李道童 彭继阳 叶丰华 张炳会 WANG Dongqing;LI Daotong;PENG Jiyang;YE Fenghua;ZHANG Binghui(Inspur Electronic Information Industry Co.,Ltd.,Beijing 100085,China)
出处 《计算机测量与控制》 2023年第11期7-15,共9页 Computer Measurement &Control
基金 山东省基金项目(2019LZH006)。
关键词 云计算 数据中心 能耗模型 监督学习 非监督学习 强化学习 cloud computing data centers energy consumption models supervised learning unsupervised learning reinforcement learning
  • 相关文献

参考文献4

二级参考文献45

  • 1Yanan Liu,Xiaoxia Wei,Jinyu Xiao,Zhijie Liu,Yang Xu,Yun Tian.Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers[J].Global Energy Interconnection,2020,3(3):272-282. 被引量:12
  • 2McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 3Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 4Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 5Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 6Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 7Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 8Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 9Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].
  • 10Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332.

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部