期刊文献+

基于深度学习的病历质量控制系统设计

Design of Medical Record Quality Control System Based on Deep Learning
下载PDF
导出
摘要 医疗领域患者的主诉信息是医疗文本分类工作的关键,能为智慧医疗和信息文本归类提供有力的支持;近几年来随着深度学习的发展应用,基于传统深度学习技术的全流程病历质量控制模型层出不穷,但传统模型存在很多缺点和局限性,诸如训练速度慢、精度损失、过拟合和无法处理大规模数据的问题,因此,引入改进的深度学习算法;指南指导下基于深度学习的全流程病历质量控制系统实验结果为:将词向量设置成160时双向循环神经网络模型效果最优,准确率为84.9%;BiGRU-SA MODEL,精准度受向量维度的影响并不大;而改进的文本分类式前馈神经网络模型,精准度在其进行第3次和第4次迭代更新时,发生指数级增长,并在第3次迭代时,精度达到理想值,为83%;随着迭代次数的增加,模型准确率呈现先增大后减小的趋势,在进行第6次迭代时模型效果最优,准确率为84.9%;优化后的全流程病历质量控制模型在变动率指标下的面积的值、准确率、F_(1)、召回率四项指标值都有了一定的提升,以上结果能更好地解决过拟合和特征信息丢失的问题,并且实现全流程病历质量的控制。 The main complaint information of patients in medical field is key to medical text classification work,which can provide a strong support for smart healthcare and information text classification.In recent years,with the development and application of deep learning,full process medical record quality control models based on traditional deep learning technologies have emerged one after another.However,traditional models have many shortcomings and limitations,such as slow training speed,accuracy loss,overfitting,and inability to process large-scale data.Therefore,an improved deep learning algorithm is introduced.Under the guidance of the guide,the experimental result of the whole process medical record quality control system based on deep learning is that,when the word vector is set to 160,the Bidirectional recurrent neural network model is the best,with an accuracy rate of 84.9%.The accuracy of BiGRU-SA Model is not significantly affected by the vector dimension.Then the accuracy of the improved text categorization feedforward neural network model increases exponentially when it is updated in the third and fourth iterations,and its precision reaches the ideal value of 83%at the third iteration.With the increase of iteration number,the accuracy of the model shows the trend of increasing first and then decreasing later.In the sixth iteration,the model performs best with an accuracy of 84.9%.The optimized whole process medical record quality control model has achieved certain improvements in four indicators of area,accuracy,F_(1),and recall under the rate of change index.The results show that the problems of overfitting and feature information loss are better solved,and the control of entire process medical record quality is achieved.
作者 罗明 LUO Ming(Guangdong Meizhou People's Hospital,Meizhou 514000,China)
出处 《计算机测量与控制》 2023年第11期235-241,共7页 Computer Measurement &Control
基金 梅州市人民医院科研培育项目(PY-C2022006)。
关键词 BiGRU-SA 全流程病历 TextCNN 医疗诊断设备 质量 BiGRU-SA full process medical records TextCNN medical diagnostic equipment connotative quality
  • 相关文献

参考文献16

二级参考文献125

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部