期刊文献+

一种基于自适应支持向量机的异常点检测方法

An Outliers Detection Method Based on Adaptive Support Vector Machine
下载PDF
导出
摘要 为了从海量的移动目标轨迹数据中识别异常轨迹点数据,提出了一种基于自适应单类支持向量机的轨迹异常点检测方法。首先,提取轨迹点的运动特征构造特征向量作为模型输入;其次,基于粒子群算法构造最优单类支持向量机模型;最后,利用最优单类支持向量机模型识别异常轨迹点。实验结果表明,新提出的方法能够自适应地构造最优单类支持向量机模型,并有效识别轨迹数据中的异常点,具有很好的自适应性与准确性。 In order to recognize abnormal trajectory pointdata from massive moving target trajectory data,a trajectory outlier detection method based on adaptive one-class support vector machine is proposed.Firstly,the motion features of the trajectory points are extracted to construct the feature vector as model input.Secondly,particle swarm optimization is used to construct the optimal one-class support vector machine model.Finally,the optimal one-class Support Vector Machine model is used to detect outliers.The application results show the newly proposed method can adaptively construct the optimal one-class support vector Machine model and effectively detect outlier from mass moving target trajectory data,and it has with good adaptability and accuracy.
作者 王福安 朱叶盛 WANG Fuan;ZHU Yesheng(The 28th Research Institute of CETC,Nanjing 210046,China)
出处 《电子质量》 2023年第10期110-114,共5页 Electronics Quality
关键词 异常点检测 粒子群算法 单类支持向量机 自适应 outlier detection particle swarm optimization one-class support vector machine adaptability
  • 相关文献

参考文献8

二级参考文献63

  • 1王振宇,马亚平,李柯.联合火力打击火力分配方案优化方法研究[J].军事运筹与系统工程,2005,19(2):12-17. 被引量:12
  • 2修建娟,何友,王国宏,董云龙.测向交叉定位系统中的交会角研究[J].宇航学报,2005,26(3):282-286. 被引量:58
  • 3Knorr E M, Ng R T, Tucakov V. Distance-based outliers: Algorithms and applications. VLDB Journal, 2000, 8 (3) : 237-253.
  • 4Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:427-438.
  • 5Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: lden tifying density-based local outliers//Proceedings of the 2000 ACM SIGMOD International Conference. Dallas, TX, USA, 2000:93-104.
  • 6Papadimitriou S, Kitagawa H, Gibbons P B, Faloutsos C. LOCI: Fast outlier detection using the local correlation into gral//Proceedings of the 19th International Conference on Data Engineering. Bangalore, India, 2003:315-326.
  • 7Aggarwal C C, Yu P S. Outlier detection for high dimensional data//Proceedings of the 2001 ACM SIGMOI) International Conference. Santa Barbara, CA USA, 2001:37 -46.
  • 8Li X, Han J, Kim S, Gonzalez H. ROAM: Rule and motifbased anomaly detection in massive moving object data sets// Proceedings of the 7th SIAM International Conferencc on Data Mining. Minneapolis, Minnesota, 2007:296-307.
  • 9Lee J, Han J, Li X. Trajectory outlier detection: A parti tion-and-detect framework//Proceedings of the 24th Interna tional Conference on Data Engineering. Cancun, Mexico,2008:140-149.
  • 10Huttenlocher D P, Klanderman G A, Rucklidge W A. Corn paring images using the hausdorff distance. IEEE Transac tions on Pattern Analysis and Machine Intelligence, 1993 15(9) : 850-863.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部