摘要
近年来,随着深度学习技术的发展,已有很多新颖的基于骨架的人体动作识别算法被提出,极大地推动了该领域的发展.对基于骨架的人体动作识别领域的主要数据集和算法进行全面、细致的总结.首先对NTU,Kinet-ics-Skeleton和SYSU 3DHOI等骨架相关的数据集进行回顾;然后将基于骨架的人体动作识别算法归纳为基于监督学习的、基于半监督学习的和基于无监督学习的3大类,并对分属不同类别的算法进行介绍和比较;最后分析和总结得出该领域当前面临过度依赖大数据、大算力和大模型等挑战,并针对性地提出缓解以上挑战的3点未来发展方向:高精度骨架数据集建设、细粒度骨架动作识别和数据有效学习的骨架动作识别.
In recent years,with the development of deep learning technology,many novel skeleton-based human action recognition algorithms have been proposed,which has greatly promoted the development of this field.This paper aims to give a comprehensive and detailed summary of the main datasets and algo-rithms in the skeleton-based human action recognition field.Firstly,the main skeleton-related datasets such as NTU,Kinetics-Skeleton,and SYSU 3DHOI are reviewed.Secondly,the skeleton-based human action recognition algorithms are summarized into three categories,i.e.,supervised learning-based,semi-supervised learning-based,and unsupervised learning-based,the main algorithms of each category are further introduced and compared.Finally,challenges that the field is currently facing,i.e.,over-reliance on big data,large computing power,and large models,are concluded,and three future development directions are proposed to alleviate the above challenges:high-precision skeleton dataset construction,fine-grained skeleton-based action recognition,and skeleton-based action recognition with data-efficient learning.
作者
刘宝龙
周森
董建锋
谢满德
周胜利
郑天一
张三元
叶修梓
王勋
Liu Baolong;Zhou Sen;Dong Jianfeng*;Xie Mande;Zhou Shengli;Zheng Tianyi;Zhang Sanyuan;Ye Xiuzi;Wang Xun(School of Computer Science and Technology,Zhejiang Gongshang University,Hangzhou 310018;Key Laboratory of Public Security Informatization Application Based on Big Data Architecture,Ministry of Public Security,Hangzhou 310053;School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018;Department of Computer and Information Security,Zhejiang Police College,Hangzhou 310053;College of Computer Science and Technology,Zhejiang University,Hangzhou 310013;Institute of Big Data and Information Technology,Wenzhou University,Wenzhou 325035)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第9期1299-1322,共24页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61976188,61972352)
基于大数据架构的公安信息化应用公安部重点实验室开放课题(2021DSJSYS001)
浙江工商大学“数字+”学科建设管理项目(SZJ2022C012)
浙江省重点研发计划(2021C03150)
浙江省基础公益技术研究计划(LGF21F020010)
浙江省省属高校基本科研业务费专项资金
公安部科技计划(2022LL16).
关键词
动作识别
骨架特征提取
深度学习
图卷积网络
action recognition
skeleton feature extraction
deep learning
graph convolutional network