期刊文献+

基于骨架的人体动作识别技术研究进展 被引量:4

Research Progress in Skeleton-Based Human Action Recognition
下载PDF
导出
摘要 近年来,随着深度学习技术的发展,已有很多新颖的基于骨架的人体动作识别算法被提出,极大地推动了该领域的发展.对基于骨架的人体动作识别领域的主要数据集和算法进行全面、细致的总结.首先对NTU,Kinet-ics-Skeleton和SYSU 3DHOI等骨架相关的数据集进行回顾;然后将基于骨架的人体动作识别算法归纳为基于监督学习的、基于半监督学习的和基于无监督学习的3大类,并对分属不同类别的算法进行介绍和比较;最后分析和总结得出该领域当前面临过度依赖大数据、大算力和大模型等挑战,并针对性地提出缓解以上挑战的3点未来发展方向:高精度骨架数据集建设、细粒度骨架动作识别和数据有效学习的骨架动作识别. In recent years,with the development of deep learning technology,many novel skeleton-based human action recognition algorithms have been proposed,which has greatly promoted the development of this field.This paper aims to give a comprehensive and detailed summary of the main datasets and algo-rithms in the skeleton-based human action recognition field.Firstly,the main skeleton-related datasets such as NTU,Kinetics-Skeleton,and SYSU 3DHOI are reviewed.Secondly,the skeleton-based human action recognition algorithms are summarized into three categories,i.e.,supervised learning-based,semi-supervised learning-based,and unsupervised learning-based,the main algorithms of each category are further introduced and compared.Finally,challenges that the field is currently facing,i.e.,over-reliance on big data,large computing power,and large models,are concluded,and three future development directions are proposed to alleviate the above challenges:high-precision skeleton dataset construction,fine-grained skeleton-based action recognition,and skeleton-based action recognition with data-efficient learning.
作者 刘宝龙 周森 董建锋 谢满德 周胜利 郑天一 张三元 叶修梓 王勋 Liu Baolong;Zhou Sen;Dong Jianfeng*;Xie Mande;Zhou Shengli;Zheng Tianyi;Zhang Sanyuan;Ye Xiuzi;Wang Xun(School of Computer Science and Technology,Zhejiang Gongshang University,Hangzhou 310018;Key Laboratory of Public Security Informatization Application Based on Big Data Architecture,Ministry of Public Security,Hangzhou 310053;School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018;Department of Computer and Information Security,Zhejiang Police College,Hangzhou 310053;College of Computer Science and Technology,Zhejiang University,Hangzhou 310013;Institute of Big Data and Information Technology,Wenzhou University,Wenzhou 325035)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第9期1299-1322,共24页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61976188,61972352) 基于大数据架构的公安信息化应用公安部重点实验室开放课题(2021DSJSYS001) 浙江工商大学“数字+”学科建设管理项目(SZJ2022C012) 浙江省重点研发计划(2021C03150) 浙江省基础公益技术研究计划(LGF21F020010) 浙江省省属高校基本科研业务费专项资金 公安部科技计划(2022LL16).
关键词 动作识别 骨架特征提取 深度学习 图卷积网络 action recognition skeleton feature extraction deep learning graph convolutional network
  • 相关文献

参考文献3

二级参考文献60

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献158

同被引文献48

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部