期刊文献+

定量脑电图特征在慢性意识障碍预后评价中的应用研究 被引量:2

Application of quantitative EEG features in prognostic evaluation of prolong consciousness disorders
下载PDF
导出
摘要 目的:探讨定量脑电图(quantitative electroencephalogram,QEEG)特征对慢性意识障碍患者意识转归的预测价值。方法:纳入脑损伤后28天于南昌大学第一附属医院康复医学科接受住院治疗的植物状态/无反应觉醒综合征(vegetative state/unresponsive arousal syndrome,VS/UWS)或最小意识状态(minimally conscious state,MCS)患者。在研究开始时收集患者的临床资料、定量脑电图特征,对患者进行为期4周的随访,通过对比入院第21—28天与入院当天的昏迷恢复量表(修订版)(Coma Recovery Scale-Revised,CRS-R)评估结果,将患者分为意识改善组和意识未改善组。变量与意识改善的相关性采用单因素和多因素Logistic回归分析,变量对意识改善的预测效能采用受试者工作特征曲线分析。结果:42例患者意识改善(46%),48例患者意识未改善(54%),单因素分析显示入院时CRS-R评分、入院时意识状态、RAV分级、α相对频带能量、频谱熵是意识改善的相关因素,差异有显著性意义(P<0.05),多因素Logistic回归分析显示仅有CRS-R评分、RAV分级以及α相对频带能量为慢性意识障碍患者意识改善的相关因素,α相对频带能量、RAV分级、CRS-R评分预测意识改善的曲线下面积(area under the curve,AUC)分别为0.851、0.648、0.767。结论:α相对频带能量、RAV分级与慢性意识障碍预后密切相关。 Objective:To explore the predictive value of quantitative electroencephalogram(QEEG)on consciousness outcome in patients with prolong disorders of consciousness.Method:Patients with vegetative state/unresponsive arousal syndrome(VS/UWS)or minimally conscious state(MCS)who were hospitalized in the Department of Rehabilitation Medicine of the First Affiliated Hospital of Nanchang University 28 days after brain injury were included.Clinical data and QEEG parameters of patients were collected at the beginning of the study.The patients were followed up for 4 weeks.By comparing the results of CRS-R diagnosis on the 28th day and within 24 hours of admission,the patients were divided into consciousness improvement group and consciousness unimproved group.The correlation between variables and consciousness improvement was analyzed by single factor and multiple factor Logistic regression,and the predictive efficacy of variables on consciousness improvement was analyzed by subject's work characteristic curve.Result:42 patients'consciousness improved(46%),while 48 patients'consciousness did not improve(54%).Univariate analysis showed that the CRS-R score at admission,consciousness state at admission,RAV grade,αRelative frequency band energy and spectral entropy were the related factors of consciousness improvement,and the difference was statistically significant(P<0.05).Multivariate Logistic regression analysis showed that only CRS-R score,RAV grade,andαrelative frequency band energy were related factors for the improvement of consciousness in patients with prolong disorders of consciousness,The area under the curve(AUC)of relative frequency band energy,RAV,and CRS-R predicting the improvement of consciousness were 0.851,0.648,0.767.Conclusion:Quantitative EEG features are closely related to the prognosis of prolong consciousness disorders.
作者 钟源 何佩 冯珍 ZHONG Yuan;HE Pei;FENG Zhen(Department of Rehabilitation Medicine,The First Affiliated Hospital of Nanchang University,Nanchang City,Jiangxi Province,330006)
出处 《中国康复医学杂志》 CAS CSCD 北大核心 2023年第11期1493-1498,共6页 Chinese Journal of Rehabilitation Medicine
基金 国家自然科学基金项目(82160437) 江西省重点研发计划重点项目(20202BBG72002) 江西省科学技术厅临床应用研究培育计划项目(20212BAG70023)。
关键词 定量脑电图特征 慢性意识障碍 意识转归 预后评价 quantitative EEG prolong disorders of consciousness consciousness conversion evaluation of prognostic
  • 相关文献

参考文献7

二级参考文献38

  • 1王晓梅,宿英英.重症脑功能损伤的脑电图分级标准研究[J].中华神经科杂志,2005,38(2):104-107. 被引量:38
  • 2刘登礼,汪吉梅,邵肖梅,关玉明.振幅整合脑电图在新生儿缺氧缺血性脑病诊断中的应用价值[J].临床儿科杂志,2005,23(5):324-325. 被引量:20
  • 3Huapin Huang Chunhui Che An Zheng Xiaoyun Zhuang Fang Jiang Nan Liu.Prognostic value of dynamic electroencephalogram in comatose patients with different diseased regions[J].Neural Regeneration Research,2007,2(7):421-424. 被引量:4
  • 4BREAKSPEAR M, TERRY J R. Topographic organization of nonlinear interdependence in muhichannel human EEG [J]. Neuroi- omage, 2002, 16(3 Pt I): 822 -835.
  • 5SOTO R, NGUYEN T C, SMITH R A. A comparison of bispectral index and entropy, or how to misinterpret both [J]. Anesth Analg, 2005, 100 ( 4) : 1059 -106l.
  • 6AREFIAN N, SEDDIGH! AS, SEDDIGH! A, et al. Accuracy of combined EEG param - eters in prediction the depth of anesthesia [J]. Iran Red Crescent Med J, 2012, 14 (12) : 833 - 837.
  • 7CHOI B M, KOH E H, KIM M G, et al. Temporal linear mode complexity as a surrogate measure of the anesthetic drug effects during sevoflurane anesthesia [J]. Korean J Anesthesiol , 2013, 65 (5): 385 -396 .
  • 8WU D Y, CAl G, YUAN Y, et al. Application of nonlinear dynamics analysis in assessing unconsciousness: a preliminary study [J]. Clin Neurophysiol, 2011,122(3): 490 -498.
  • 9SARA M, PISTOIA F, PASQUALETTI P, et al. Functional isolation within the cerebral cortex in the vegetative state: a nonlinear method to predict clinical outcomes [J]. Neurorehabil Neural Repair, 2011, 25( I) : 35 -42.
  • 10吴东宇,孙智千,柯莎,袁英,李广庆.脑电非线性分析用于意识障碍苏醒预测[J].中国康复医学杂志,2009,24(11):969-972. 被引量:5

共引文献43

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部