期刊文献+

基于深度迁移学习的柴油机故障诊断研究 被引量:4

Diesel engine fault diagnosis based on deep transfer learning
下载PDF
导出
摘要 得益于大数据和人工智能的高速发展,数据驱动的智能故障诊断方法受到广泛关注。然而,在柴油机故障数据稀缺的情况下,传统神经网络训练容易出现过拟合且网络泛化能力差。为解决上述问题,提出一种基于深度迁移学习的小样本故障诊断方法。构建一种适用于柴油机原始振动信号的宽卷积核卷积长短期记忆神经网络,来提高故障数据特征提取和抗噪的能力,另外从原始数据自动提取特征,增强特征学习的智能性。进一步采用迁移学习方案,将大型标签源域数据的诊断知识迁移到目标域网络上,改进网络在目标域任务小样本条件下的学习和分类能力。在跨故障域和跨设备域迁移任务上进行算法评估,并与传统深度神经网络进行比较,验证了所提方法可有效改进小样本诊断性能。 Being profited from rapid development of big data and artificial intelligence,data-driven intelligent fault diagnosis methods receive wide attention.However,in cases of scarce diesel engine fault data,traditional neural network training is easy to overfit and has poor network generalization ability.Here,to solve the above problems,a small sample fault diagnosis method based on deep transfer learning was proposed.A wide convolution kernel convolution long short-term memory neural network suitable for diesel engine original vibration signals was constructed to improve the ability of fault data feature extraction and noise resistance.In addition,features were automatically extracted from original data to enhance the intelligence of feature learning.Further,transfer learning scheme was adopted to transfer diagnostic knowledge of large type label source domain data into target domain network,and improve network's learning and classification ability under the condition of target domain task's small sample.The algorithm of the proposed method was evaluated with transfer tasks in cross-fault domain and cross-device domain,and the results were compared with those obtained with traditional deep neural network.It was verified that the proposed method can effectively improve the diagnosis performance of small sample.
作者 宋业栋 马光伟 裴国斌 张俊红 SONG Yedong;MA Guangwei;PEI Guobin;ZHANG Junhong(Weichai Power Co.,Ltd.,Weifang 261061,China;State Key Laboratory of Combustion for Internal Combustion Engines,Tianjin University,Tianjin 300072,China;School of Mechanical Engineering,Tianjin Renai College,Tianjin 301636,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第21期219-226,共8页 Journal of Vibration and Shock
基金 内燃机可靠性国家重点实验室开放课题(skler-202009)。
关键词 迁移学习 柴油机 故障诊断 小样本 抗噪性 transfer learning diesel engine fault diagnosis small sample noise immunity
  • 相关文献

参考文献5

二级参考文献44

  • 1高云超,桑恩方,刘百峰.基于经验模式分解的自适应去噪算法[J].计算机工程与应用,2007,43(26):59-61. 被引量:20
  • 2GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 3HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 5BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 6WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 7BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 8ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 10JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.

共引文献389

同被引文献41

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部