期刊文献+

计算机课程相似度计算方法及其改进 被引量:1

Calculation methods and improvement of similarity in computer courses
下载PDF
导出
摘要 在传统描述方法上,计算机科学课程一般使用教学计划和教学大纲来描述专业知识和课程知识点的整体结构,由于计算机科学课程结构复杂,各个课程间联系紧密,依靠传统方法不足以把握计算机科学课程的总体结构和专业课之间的普遍联系。文章针对传统方法的不足,提出构建基于计算课程知识图谱的方法,具体包括:①课程知识图谱的构建,量化课程知识点关系,构建知识点关系矩阵,量化各知识点间的关系;②课程关系的构建,量化所有课程间的关系;③国外计算机名校关系的构建分析。研究发现,计算课程知识图谱的构建和分析将对目前计算机科学专业课程的改革研究具有一定的创新意义,这种计算机科学专业课程知识图谱的构建方法,可弥补传统课程描述方法上的不足,为计算机科学专业课程改革分析提供一定的数据支持,同时,对相似度的衡量提供了一种新的方法,提高了相似度衡量速度。该方法也可移植到其他学科。 In traditional methods of describing computer science courses,instructional plans and course outlines are commonly used to represent the overall structure of computer science s specialized knowledge and course content.However,due to the intricate nature of computer science courses and their interconnectedness,relying on traditional methods makes it challenging to grasp the overall structure of computer science courses and the connections between specialized courses.This article addresses the limitations of traditional methods in describing computer science courses and proposes a method for constructing a computer course knowledge graph to address these shortcomings.Specifically,this includes the construction of a course knowledge graph,quantifying the relationships between courses and knowledge points,building a knowledge point relationship matrix to quantify relationships between various knowledge points,constructing course relationships to quantify relationships between all courses,and analyzing relationships between top computer science schools internationally.The construction and analysis methods of the computer course knowledge graph are expected to have innovative significance for current reforms in computer science education.They provide a new approach to building a knowledge graph for computer science education and can be easily adapted to other disciplines.This new computer course knowledge graph fills in the gaps of traditional course description methods,and offers data support for the reform and analysis of computer science education.Additionally,it introduces a novel method for measuring similarity,thereby enhancing similarity calculation speed.
作者 仲启玉 张少宏 丁汉 张芷芊 ZHONG Qi-yu;ZHANG Shao-hong;Ding Han;ZHANG Zhi-qian(School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 510006,China;School of Information Engineering,Guangzhou South China Business Trade College,Guangzhou 510650,China)
出处 《广州大学学报(自然科学版)》 CAS 2023年第5期63-71,共9页 Journal of Guangzhou University:Natural Science Edition
基金 广东省基础与应用基础研究基金资助项目(2022A1515011697)。
关键词 知识图谱 文本量化 相似度计算 聚类分析 knowledge graph text quantification similarity calculation cluster analysis
  • 相关文献

参考文献1

二级参考文献14

  • 1ABILHOA W D, CASTRO L N D. A keyword extraction method from twitter messages represented as graphs [ J]. Applied Mathematics and Computation, 2014, 240(4) : 308 - 325.
  • 2CHEN Y H, LU J L, MENG F T. Finding keywords in blogs: efficient keyword extraction in blog mining via user behaviors [ J]. Expert Systems with Applications, 2014, 41(2):663 -670.
  • 3JEAN-LOUIS L, GAGNON M, CHARTON E. A knowledge-base o-riented approach for automatic keyword extraction [ J]. Computacion y Sistemas, 2013, 17(2) : 187 - 196.
  • 4HABIBI M, POPESCU-BELIS A. Keyword extraction and clustering for document recommendation in conversations [ J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2015, 23 (4) :746 -759.
  • 5ZIPF G K. Human behavior and the principle of least effort: an introduction to human ecology [ M]. Boston: Addison-Wesley Press, 1949: 23.
  • 6BOOTH A D. A law of occurrences for words of low frequency [ J]. Information and Control, 1967, 10(4) : 386 -393.
  • 7EGGHE L. A new short proof of Naranan's theorem, explaining Lotka's law and Zipt's law [ J]. Journal of the American Society for Information Science and Technology, 2010, 61(12) : 2581 -2583.
  • 8CHAN P, HIJIKATA Y, NISHIDA S. Computing semantic relatedness using word frequency and layout information of wikipedia [ C]// Proceedings of the 28th Annual ACM Symposium on Applied Computing. New York: ACM, 2013:282-287.
  • 9SURYASEN R, RANA M S. Content analysis and application of Zipfs law in computer science literature [ C]//Proceedings of the 2015 4th International Symposium on Emerging Trends and Technologies in Libraries and Information Services. Piseataway, NJ: IEEE, 2015:223 -227.
  • 10ZIPF G K. Psyehol [ M]. Boston: Addison-Wesley Press, 1938: 347 - 367.

共引文献76

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部