摘要
随着基于大数据、人工智能等技术的决策算法被越来越多地应用于公共决策,公共决策正在逐渐出现由传统经验决策向人机协同决策的转型。但如何将前沿算法技术有效嵌入决策过程、真正实现决策质量提升还需解析一系列人机协同决策中的基础机制。本文旨在阐释人机协同决策内涵,并跨学科梳理相关研究进展,为未来研究提供框架与参考。文章辨析了人机协同公共决策的概念内涵与主要过程,梳理当前研究关注的重点议题,包括个体层面的算法认知基础机制、多元主体层面的裁量权变化与影响以及算法参与公共决策的潜在风险,构建了由微观个体算法认知机制、中观多元主体-算法互动机制以及宏观综合影响三个层次研究内容所构成的人机协同公共决策分析框架,并提出了若干值得探索的未来研究方向。
The emergence of big data and progresses in artificial intelligence are driving the application of algorithms in public decision-making.Correspondingly,there is a modal shift in public decision-making towards human-AI collaborative decision-making.However,to truly integrate cutting-edge algorithms into public decisions and effectively enhance the quality of decisions,it is necessary to explore the fundamental mechanisms of how human and AI interact in public decision-making contexts.To fill the gap,this article aims to provide a review of relevant research from multiple disciplines and provide a roadmap for future research.The article starts from conceptualizing human-AI collaborative decision-making in the public sector,providing a conceptual model on the collaboration process.The key research topics include decision-makers’perception and attitudes towards algorithms at the individual level,the(re)distribution of discretion at the organizational level,and the potential risks of algorithm application in public-sector decision-making.Finally,the article proposes a research framework composed of algorithm perception at the micro-level,multiagent-algorithm interaction at the meso-level,and impact evaluation of this new decision-making approach at the macro-level.A number of future research questions are also proposed.
作者
刘伦
Liu Lun(the School of Government and Researcher at the Institute of Public Governance,Peking University,Beijing 100871)
出处
《中国行政管理》
北大核心
2023年第9期142-151,共10页
Chinese Public Administration
基金
国家自然科学基金青年项目“基于‘空间-行为’时序大数据的城市片区功能混合与夜间活力关联机制及规划政策研究”(编号:52008005)
北京市社会科学基金重点项目“疫情防控常态化下的超大城市治理政策成本-效益系统化评估”(编号:20GLA003)
东湖高新区国家智能社会治理实验综合基地项目。
关键词
人工智能
算法决策
人机协同
公共决策
artificial intelligence
algorithmic decision-making
human-AI collaboration
public decision-making