期刊文献+

非可微r-不变凸函数的η-鞍点条件

η -saddle Point Condition for Non-differentiable r -invexity Functions
下载PDF
导出
摘要 利用η-逼近法,定义了η-鞍点和η-Lagrange函数。研究了一类包含r-不变凸函数的非线性数学规划问题的鞍点条件,得到了η-近似优化问题下的η-鞍点最优性准则和原规划的最优解与η-近似优化问题下的η-Lagrange鞍点的等价性,用新的方法推广了相关鞍点结论。 This paper uses theη-approximation method to define theη-saddle point andη-Lagrange functions.The saddle point conditions of a class of nonlinear mathematical programming problems including r-invex functions are studied,and theη-saddle point optimality criterion under theη-approximation optimization problem and the optimal solution of the original program and the equivalence of theη-Lagrange saddle point under theη-approximation optimization problem are obtained,and the relevant saddle point conclusion is generalized by the new method.
作者 袁静 李向有 刘文艳 YUAN Jing;LI Xiangyou;LIU Wenyan(College of Mathematics and Computer Science,Yan’an University,Yan’an 716000,China)
出处 《贵州大学学报(自然科学版)》 2023年第6期18-23,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(11961072) 陕西省教育厅科研资助项目(17JK0860) 延安大学校级科研计划资助项目(YDY2020-24)。
关键词 η逼近方法 η-鞍点 r-不变凸函数 η-Lagrange函数 η-approximation method η-saddle point r-invariant convex function η-Lagrange function
  • 相关文献

参考文献4

二级参考文献35

  • 1Hanson M A. On Sufficiency of the Kuhn-Tucker Conditions [J]. Journal of Mathematical Analysis and Applications, 1981, 80: 545 - 550.
  • 2Craven B D. Invex Functions and Constrained Local Minima [J]. Bul. Austral. Math. Soc. , 1981, 24:357 -366.
  • 3Antczak T. An η-Approximation Approach to Nonlinear Mathematical Programming Involving Invex Functions [J]. Numerial Functional Analysis and Optimization, 2004, 25: 423- 438.
  • 4Antczak T. A New Method of Solving Nonlinear Mathematical Programming Problems Involving r-invex Functions [J]. Journal of Mathematical Analysis and Applications, 2005, 311: 313- 323.
  • 5Antczak T. An η-Approximation Approach to Duality in Mathematical Programming Problems Involving r-invex Functions [J]. Journal of Mathematical Analysis and Applications, 2006, 315.. 555- 567.
  • 6Sawaragi Y, Nakayama H, Tanino T. Theory of Multiobjective Optimization [M]. New York: Academic Press, 1985.
  • 7Miettinen K M. Nonlinear Multiobjective Optimization [M]. Boston: Kluwer Academic, 1999.
  • 8Mishra S K. On multiple-objective optimization with gener- alized univexity [J]. J Math Anal Appl, 1998,224 : 131 - 148.
  • 9Bettor C R. Duality for multinbjective B-Vex programming involving n-set functions [ J ]. J Math Anal Appl, 1996, 202 : 701-726.
  • 10Hanson M A. On sufficiency of the Kuhn-Tucker conditions [ J]. J Math Anal Appl, 1981,80:545-550.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部