期刊文献+

基于数字孪生的刀具磨损监测和预测方法研究

Research on Tool Wear Monitoring and Prediction Method Based on Digital Twins
下载PDF
导出
摘要 利用数字孪生方法建立了刀具磨损监测和预测模型,并利用实际测量得到的数据对算法进行验证。首先,在理论方面归纳总结了数字孪生模型的基本理论和实现方法,主要包括几何、物理、行为以及规则4种子模型。其次,以随机森林算法为基础,实现了刀具磨损与预测数学模型的搭建,主要改进点为利用特征向量的表示优化随机森林算法。最后,利用实验数据验证该算法。结果显示,该算法提升了刀具磨损预测的准确率。 A tool wear monitoring and prediction model is established by using digital twin method,and the algorithm is verified by the actual measurement data.In this paper,the basic theory and implementation method of digital twin model are summarized theoretically,which mainly includes geometric,physical,behavioral and rule 4 seed models.Secondly,the mathematical model of tool wear and prediction is built based on the random forest algorithm.The main improvement point is to optimize the random forest algorithm by using the representation of eigenvector.Finally,experimental data are used to verify the algorithm.The results show that the algorithm improves the accuracy of tool wear prediction.
作者 唐艳玲 吴捷 TANG Yanling;WU Jie(Suzhou University,Suzhou 215131)
机构地区 苏州大学
出处 《现代制造技术与装备》 2023年第10期12-15,共4页 Modern Manufacturing Technology and Equipment
关键词 数字孪生 刀具磨损 监测 预测 digital twin tool wear monitor forecast
  • 相关文献

参考文献3

二级参考文献23

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部