摘要
综合天然气多组分混合比例、临界压力和温度等因素影响,构建跳过连接的卷积神经网络模型,提出利用残差神经网络(ResNet)预测高压气井多元体系天然气水合物生成的方法。井场试验结果表明,相较于传统全连接神经网络(FCNN)与小波神经网络(WNN),基于大数据集参数自动调优和动态微调残差神经网络模型的多元体系水合物生成预测效果较优且吻合程度较高,预测均方误差由WNN的0.006~3.417和FCNN的0.008~3.722降至ResNet的0.001~1.020,并可量化分析单组分体系以及二元和多组分体系水合物相平衡实际压力随温度动态变化关系。
Taking into account factors such as component mixing ratio,critical pressure,and temperature in multi-component system of high-pressure gas wells,a connection-skipping convolutional neural network model is constructed,and the generation conditions of natural gas hydrate are predicted using residual neural network(ResNet).The well site test results show that compared to traditional fully connected neural network(FCNN)and wavelet neural network(WNN),the prediction result of hydrate generation in the multi-component system using the residual neural network(ResNet)which is based on the automatic tuning and dynamic fine-tuning of network parameters is more accurate.It makes the mean square error of prediction results decreased to 0.001~1.020 from 0.006~3.417 of WNN and 0.008~3.722 of FCNN.Residual neural networks can also be used to quantitatively analyze the dynamic relationship between the actual phase equilibrium pressure and temperature of single component and multi-component hydrate systems.
作者
刘广胜
郑刚
邓泽鲲
魏韦
刘新福
LIU Guangsheng;ZHENG Gang;DENG Zekun;WEI Wei;LIU Xinfu(Oil and Gas Technology Institute,PetroChina Changqing Oilfield Company,Xi’an,Shaanxi 710018,China;National Engineering Laboratory of Low-Permeability Oil&Gas Exploration and Development,Xi’an,Shaanxi 710018,China;School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao,Shandong 266520,China)
出处
《西安石油大学学报(自然科学版)》
CAS
北大核心
2023年第6期33-38,99,共7页
Journal of Xi’an Shiyou University(Natural Science Edition)
基金
国家自然科学基金面上项目“深层大斜度井段多因素耦合排采泵动态特性及气-水-粉多相流态运移机制”(52074161)
山东省自然科学基金面上项目“深水管道水合物多相多组分液塞耗散机理与流动安全机制”(ZR2022ME173)
山东省高等学校青创人才引育计划“海洋工程可燃冰高效分离装备技术团队”(2021-青创-30613019)
泰山学者工程专项“深水可燃冰多场多相管式多级分离与流动保障机制”(tsqn202211177)。
关键词
天然气水合物
预测方法
残差神经网络
相平衡
参数动态微调
高压气井
natural gas hydrate
prediction method
ResNet
phase equilibrium
dynamic fine-tuning of network parameters
high-pressure gas well