期刊文献+

CT影像组学预测巴塞罗那临床肝癌分期系统早中期肝细胞癌的可行性研究 被引量:1

A feasibility study of CT radiomics for predicting hepatocellular carcinoma at early and intermediate stages
下载PDF
导出
摘要 目的:探讨CT影像组学预测巴塞罗那临床肝癌分期系统(BCLC)早中期肝细胞癌的可行性。方法:回顾性分析190例BCLC分期中早中期肝细胞癌患者的CT平扫、增强扫描动脉期及门静脉期图像。采用ITK-SNAP软件手动勾画病灶ROI;用Anaconda软件提取ROI纹理特征,采用最小绝对收缩与选择算子(LASSO)回归模型降维运算获取纹理特征,并建立预测模型。通过ROC曲线评价预测模型的检测效能。结果:基于CT平扫图像的影像组学模型在测试集诊断BCLC 0期(最早期)、A期(早期)及B期(中期)的AUC分别为0.61、0.51、0.55,总准确率为35.4%;基于动脉期图像影像组学模型在测试集诊断0、A及B期的AUC分别为0.99、0.98、0.99,总准确率为92.7%;基于门静脉图像的影像组学模型在测试集诊断0、A及B期的AUC分别为0.98、0.95、0.99,总准确率为90.9%。DeLong检验显示,动脉期组学模型及门静脉期组学模型均与平扫组学模型对A、B期肝细胞癌诊断效能差异均有统计学意义(均P<0.05),动脉期组学模型与门静脉期组学模型对0、A、B期的诊断效能差异均无统计学意义(均P>0.05)。结论:动脉期及门静脉期的CT影像组学模型可用于预测BCLC早中期肝细胞癌。 Objective:To explore the feasibility of CT radiomics for predicting hepatocellular carcinomas at early and intermediate stages of Barcelona Clinic Liver Cancer(BCLC)system.Methods:CT images of 190 patients with BCLC early and intermediate stages hepatocellular carcinoma were retrospectively analyzed.ITK-SNAP software and Anaconda software were used to construct ROI and extract the texture features.Least absolute shrinkage and selection operator(LASSO)regression analysis was used for feature selection and establishment of prediction model.ROC curve was used to analyze the diagnostic effectiveness.Results:The AUCs of the prediction model of the non-enhanced CT images for BCLC earliest,early and intermediate stages in the validation cohort were 0.61,0.51 and 0.55,those of the arterial phase images were 0.99,0.98 and 0.99,those of the portal vein phase images were 0.98,0.95 and 0.99,and the total accuracy rate of the three models was 35.4%,92.7%and 90.9%,respectively.DeLong test showed that the effectiveness of the prediction models of the arterial and portal vein phase images was different with that of the non-enhanced CT images in the diagnosis of early and intermediate stages hepatocellular carcinoma(both P<0.05),while there was no difference between the arterial phase images and the portal vein phase images(P>0.05).Conclusion:Contrast-enhanced CT radiomics model can be used to predict hepatocellular carcinoma at BCLC early and intermediate stages.
作者 韩冬 陆洋 段绍峰 郭莉莉 HAN Dong;LU Yang;DUAN Shaofeng;GUO Lili(Department of Imaging,Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University,Huai’an 223300,China)
出处 《中国中西医结合影像学杂志》 2023年第6期614-619,共6页 Chinese Imaging Journal of Integrated Traditional and Western Medicine
关键词 体层摄影术 X线计算机 影像组学 肝细胞 巴塞罗那临床肝癌分期 Tomography,X-ray computed Radiomics Carcinoma,hepatocellular Barcelona clinic liver cancer staging
  • 相关文献

参考文献6

二级参考文献47

  • 1凌昌全,刘庆,李东涛,岳小强,侯凤刚,朱德增,俞超芹,陈喆,翟笑枫,于洋.原发性肝癌常见中医基本证候定性诊断规范的研究[J].中西医结合学报,2005,3(2):95-98. 被引量:77
  • 2Bottcher J,Hansch A,Pfeil A,et al.Detection and classification of different liver lesions:comparison of Gd-EOB-DTPAenhanced MRI versus multiphasic spiral CT in a clinical single centre investigation.Eur J Radiol,2013,82(11):1860-1869.
  • 3Halavaara J,Breuer J,Ayuso C,et al.Livertumor characterization:comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT-a multicenter trial.J Comput Assist Tomogr,2006,30(3):345-354.
  • 4Ros PR,Mortele KJ.Hepatic imaging.An overview.Clin Liver Dis,2002,6(1):1-16.
  • 5Van Leeuwen MS,Noordzij J,Feldberg MA,et al.Focal liver lesions:characterization with triphasic spiral CT.Radiology,1996,201(2):327-336.
  • 6Castellano G,Bonilha L,Li LM,et al.Texture analysis of medical images.Clin Radiol,2004,59(12):1061-1069.
  • 7Hahn S,Heusner T,Zhou X,et al.Computer-aided detection(CAD)and assessment of malignant lesions in the liver and lung using a novel PET/CT software tool:initial results.Rofo,2010,182(3):243-247.
  • 8House MJ,Bangma SJ,Thomas M,et al.Texture-based classification of liver fibrosis using MRI.J Magn Reson Imaging,2015,41(2):322-328.
  • 9Virmani J,Kumar V,Kalra N,et al.Neural network ensemble based CAD system for focal liver lesions from b-mode ultrasound.J Digit Imaging,2014,27(4):520-537.
  • 10Mougiakakou SG,Valavanis IK,Nikita A,et al.Differential diagnosis of CT focal liver lesions using texture features,feature selection and ensemble driven classifiers.Artif Intell Med,2007,41(1):25-37.

共引文献191

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部