期刊文献+

面向多尺度拓扑优化的渐进均匀化GPU并行算法研究

Efficient GPU parallel strategy for multi-scale topology optimization via asymptotic homogenization
下载PDF
导出
摘要 针对多尺度结构拓扑设计计算效率低等问题,提出了一种基于水平集渐进均匀化的多尺度拓扑优化并行算法。基于通用图形处理器(graphics processing unit,GPU),通过水平集初始化、大型稀疏刚度矩阵方程求解以及本构矩阵并行计算,可大幅提升渐进均匀化算法的效率。实验结果表明,当三维晶胞单元网格细化至分辨率为10万时,多尺度结构拓扑优化GPU并行算法较CPU串行算法快数十倍。 In response to the low computational efficiency in the context of multi-scale structural topology design,an efficient asymptotic homogenization GPU parallel strategy is presented.The strategy leverages the graphics processing unit(GPU)and investigates parallel strategies for level set initialization,large sparse stiffness matrix equations solving and constitutive properties computing.Experimental results demonstrate that the computing efficiency of the asymptotic homogenization can be greatly improved by adopting the parallel strategies,in particular,when refining a three-dimensional unit cell grid to a resolution of 100000,the GPU parallel strategy achieves a speedup of two orders of magnitude compared to the CPU serial.
作者 夏兆辉 刘健力 高百川 聂涛 余琛 陈龙 余金桂 XIA Zhaohui;LIU Jianli;GAO Baichuan;NIE Tao;YU Chen;CHEN Long;YU Jingui(School of Mechanical Science and Engineering/National Key Laboratory of Advanced Manufacturing Technology,Huazhong University of Science and Technology,Wuhan 430074,China;School of Mathematics and Computer Science,Wuhan Polytechnic University,Wuhan 430023,China;School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2023年第6期722-735,共14页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金青年项目(52005192) 国家重点研发计划青年科学家项目(2022YFB3302900).
关键词 多尺度拓扑优化 渐进均匀化 统一计算设备架构(CUDA) GPU并行计算 multi-scale topology optimization asymptotic homogenization compute unified device architecture(CUDA) GPU parallel computing
  • 相关文献

参考文献1

二级参考文献15

  • 1Ament M, Knittel G, Weskopf D, et al. A parallel preconditioned conjugate gradient solver for the poisson problem on a muhi-gpu platform [C] //Proe of the 18th Euromicro Conf on Parallel, Distributed and Network-Based Processing. Piscataway, N J: IEEE, 2010:583-592.
  • 2Benzi M, Tuma M. A comparative approximate inverse preconditioners [J]. Mathematics, 1999, 30(2): 305-340.
  • 3Helfenstcin R, Koko J. Parallel precon gradient algorithm on GPU [J]. Journal and Applied Mathematics, 2012, 236(15).
  • 4Li R, Saad Y, GPU-accelerated precondiiioned iterative linear solvers I-J3. The Journal of Supereomputing, 2013, 63 (2) : 443-466.
  • 5Naumov M. Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and CUBLAS [R]. Santa Clara, CA; NVIDIA Corporation, 2011.
  • 6Sudan H, Klie H, Li R, et al. High performance manyeore solvers for reservoir simulation [C] /]Proe of the 12th European Conf on the Mathematics of Oil Recovery. Berlin Springer, 2010 [2013-09-20]. http://www-users, es. umn. edu/saad/PDF/A044, pdf.
  • 7Gupta R. A GPU implementation of a bubbly flow solver [D]. Delft, Holland: Delft University of Technology, 2009.
  • 8Amestoy P R, Davis T A, Duff I S. An approximate minimum degree ordering algorithm [J]. SIAM Journal on Matrix Analysis and Applieations, 1996, 17(4): 886-905.
  • 9George A, 1.iu J W H. The evolution of the minimum degree ordering algorithm [J]. SIAM Review, 1989, 31 (1) : 1-19.
  • 10Saad Y. lteralive Methods for Sparse Linear Systems [M]. Philadelphia, PA, SIAM, 2003.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部