摘要
将神经网络用于场景几何材质的高效表达,结合逆向渲染在二维光度图的监督下重建高质量的网格和材质贴图,为现有的图形学流水线提供服务——神经渲染已成为近年来计算机图形学新的研究热点。在IRON(inverse rendering by optimizing neural SDFs and materials from photometric images)神经渲染模型基础上,通过引入多分辨率哈希编码,采用冻结训练等方法提高原始模型的训练速度。在多个数据集上的对比实验表明,优化后的IRON逆渲染模型训练速度提升了约40%,且重建结果中包含更多细节。
In recent years,the utilization of neural networks to represent 3D scenes for novel view synthesis has emerged as a new research focus in computer graphics,known as neural rendering.Neural networks can also be applied to efficiently represent the geometry and materials of scenes,enabling the reconstruction of high-quality meshes and texture maps under the supervision of 2D photometric images in inverse rendering,thus serving existing graphics pipelines.In this paper,we extend the latest inverse rendering by optimizing neural SDFs and materials from photometric images(IRON)neural rendering model by introducing a multiresolution hash encoding technique and employing strategies such as freezing parameters to enhance the training speed of the original model.Through comparative evaluations on multiple datasets,we achieve approximately 40%improvement in training speed compared to the original model,while producing reconstructions with more details.
作者
张沛全
许威威
ZHANG Peiquan;XU Weiwei(College of Computer Science and Technology,Zhejiang University,Hangzhou 310058,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023年第6期754-760,769,共8页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金重点项目(61732016).
关键词
符号距离场
神经渲染
哈希编码
signed distance fields
neural rendering
hash encoding