期刊文献+

Direct imaging of shock wave splitting in diamond at Mbar pressure

下载PDF
导出
摘要 Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores of super-Earths,and at microscales—damage to ceramic materials and high-pressure plastic transformation and phase transitions in solids.Under dynamic compression of solids up to Mbar pressures,even a solid with high strength exhibits plastic properties,causing the induced shock wave to split in two:an elastic precursor and a plastic shock wave.This phenomenon is described by theoretical models based on indirect measurements of material response.The advent of x-ray free-electron lasers(XFELs)has made it possible to use their ultrashort pulses for direct observations of the propagation of shock waves in solid materials by the method of phase-contrast radiography.However,there is still a lack of comprehensive data for verification of theoretical models of different solids.Here,we present the results of an experiment in which the evolution of the coupled elastic-plastic wave structure in diamond was directly observed and studied with submicrometer spatial resolution,using the unique capabilities of the x-ray free-electron laser(XFEL).The direct measurements allowed,for the first time,the fitting and validation of the 2D failure model for diamond in the range of several Mbar.Our experimental approach opens new possibilities for the direct verification and construction of equations of state of matter in the ultra-high-stress range,which are relevant to solving a variety of problems in high-energy-density physics.
出处 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第6期90-100,共11页 极端条件下的物质与辐射(英文)
基金 We thank the technical staff of SACLA for their support during the experiment.The experiment was performed at BL3 of SACLA with the approval of the Japan Synchrotron Radiation Research Institute(Proposal Nos.2021A8004 and 2021B8002).The high-power drive laser installed in SACLA EH5 was developed with the cooperation of Hamamatsu Photonics.The installation of diffractive optical elements to improve the smoothness of the drive laser-pattern was supported by the SACLA Basic Development Program The work was carried out with the financial support of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation(Grant No.075-15-2021-1352) This work was supported by KAKENHI(Grant Nos.17K05729 and 21K03499)from the Japan Society for the Promotion of Science(JSPS).
关键词 shock WAVE SOLIDS
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部