摘要
我国古代玻璃制品受环境的影响极易被风化,对风化后的玻璃制品进行成分分析与鉴别为后续研究工作的开展提供理论依据。针对古代玻璃的成分分析与鉴别的问题,该文首先对一批我国古代玻璃制品的成分数据进行清洗工作和统计分析,在此基础上建立随机森林模型分析高钾玻璃和铅钡玻璃的分类规律,并通过聚类分析确定2类玻璃的亚分类,其次构建基于支持向量机的鉴别模型确定待分类玻璃的类别及其亚类。最后对模型分别进行灵敏度分析,验证模型的合理性和有效性。
China's ancient glass products are easily weathered by the environment.The composition analysis and identification of weathered glass products is the theoretical basis for the follow-up research work.Aiming at the problem of composition analysis and identification of ancient glass,this paper first carries out cleaning and statistical analysis on the composition data of a number of ancient glass products in China.On this basis,a random forest model is established to analyze the classification of high potassium glass and lead-barium glass,and the subclassification of the two types of glass is determined by cluster analysis,and then support vector machines are constructed to determine their categories and subclasses.Finally,the sensitivity of the model is analyzed to verify the rationality and validity of the model.
出处
《科技创新与应用》
2023年第34期109-113,共5页
Technology Innovation and Application
基金
2022年湖南省大学生创新创业训练计划项目(无编号)
湖南省教育厅科学研究一般项目(22C0542)
湖南科技学院科学研究项目(21XKY038)。
关键词
古代玻璃
随机森林
聚类分析
支持向量机
风化
ancient glass
random forest
cluster analysis
support vector machine
weathering