期刊文献+

Caputo型分数阶微分系统正解的唯一性

Uniqueness of Positive Solutions for Caputo Fractional Differential Systems
下载PDF
导出
摘要 考虑一类非线性p-Laplacian分数阶微分方程耦合系统多点边值问题,其中非线性函数包含Caputo分数阶导数,其边界条件包含非线性积分项。基于和算子的广义不动点定理及分数阶微积分算子的性质,分析该耦合系统的唯一正解;借助相应算子方程推导出唯一正解的存在性;通过数值算例对主要结果进行检验分析。 A class of nonlinear p-Laplacian fractional differential equation coupling systems with multipoint boundary value problems is considered where the nonlinear function contains the Caputo fractional derivative and the boundary conditions include nonlinear integral terms.Based on the generalized fixed point theorem of sum operator and the properties of fractional calculus operator,the unique positive solution of the coupling system is analyzed.The existence of the unique positive solution is deduced by means of the corresponding operator equation,and the main results are obtained.The main results are tested by numerical examples.
作者 徐紫钰 吴克晴 XU Ziyu;WU Keqing(School of Science,Jiangxi University of Science and Technology,Ganzhou Jiangxi 341000,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第6期92-104,共13页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61364015)。
关键词 正解 分数阶导数 算子方程 P-LAPLACIAN 唯一性 positive solution fractional derivative operator equation p-Laplacian uniqueness
  • 相关文献

参考文献3

二级参考文献9

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部