摘要
考虑一类非线性p-Laplacian分数阶微分方程耦合系统多点边值问题,其中非线性函数包含Caputo分数阶导数,其边界条件包含非线性积分项。基于和算子的广义不动点定理及分数阶微积分算子的性质,分析该耦合系统的唯一正解;借助相应算子方程推导出唯一正解的存在性;通过数值算例对主要结果进行检验分析。
A class of nonlinear p-Laplacian fractional differential equation coupling systems with multipoint boundary value problems is considered where the nonlinear function contains the Caputo fractional derivative and the boundary conditions include nonlinear integral terms.Based on the generalized fixed point theorem of sum operator and the properties of fractional calculus operator,the unique positive solution of the coupling system is analyzed.The existence of the unique positive solution is deduced by means of the corresponding operator equation,and the main results are obtained.The main results are tested by numerical examples.
作者
徐紫钰
吴克晴
XU Ziyu;WU Keqing(School of Science,Jiangxi University of Science and Technology,Ganzhou Jiangxi 341000,China)
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023年第6期92-104,共13页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金(61364015)。