期刊文献+

Predictions of nuclear charge radii based on the convolutional neural network 被引量:1

下载PDF
导出
摘要 In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network(CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A ≥ 39 and Z ≥ 20. The developed neural network achieved a root mean square(RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd–even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期83-90,共8页 核技术(英文)
基金 supported by Shanghai “Science and Technology Innovation Action Plan” Project (No. 21ZR140950)。
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部