期刊文献+

Instantaneous velocity determination and positioning using Doppler shift from a LEO constellation 被引量:1

原文传递
导出
摘要 To provide backup and supplementation for the Global Navigation Satellite System(GNSS),Doppler shift from Low Earth Orbit(LEO)satellites can be used as signals of opportunity to provide positioning,navigation,and timing service.In this contribution,we frst investigate the model and performance of instantaneous velocity determination and positioning with LEO satellites.Given a LEO constellation with 288 satellites,we simulate Doppler shift observations at nine multi-GNSS experiment stations.Owing to the lower orbit,the performance of LEO velocity determination is much more sensitive to the initial receiver position error than that of GNSS.Statistical results show that with the initial receiver position error increased from 0.1 to 10 m,the Root Mean Square Errors(RMSEs)increase from 0.73 to 2.65 cm/s,0.68 to 2.96 cm/s,and 1.67 to 4.15 cm/s in the east,north,and up directions,respectively.The performances with GPS are compared with GPS+LEO,and it is found that LEO Doppler shift observations contribute to GPS velocity determination.As for LEO Doppler positioning,even if more than 30 visible LEO satellites are available,the position dilution of precision values can reach several hundreds.Assuming that the error of LEO Doppler measurements is 0.01 m/s,the instantaneous Doppler positioning accuracy can achieve about a few meters,which is comparable to that of GNSS pseudorange positioning.A constant velocity model is adopted for state transition.Static LEO Doppler positioning results show that an accuracy at centimeter to decimeter level can be achieved after solution convergence.For a static simulated kinematic positioning test,the RMSEs range from a few decimeters to several meters in diferent regions by giving diferent constraints.For a dynamic positioning test,the RMSEs are about 2–3 m in high latitude region.
出处 《Satellite Navigation》 EI CSCD 2023年第1期28-40,I0002,共14页 卫星导航(英文)
基金 the Fund of National Key Research and Development Program of China(No.2022YFB3903902) the National Science Fund for Distinguished Young Scholars(No.41825009) the Key Research and Development Program of Hubei Province(No.2022BAA054).
  • 相关文献

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部