期刊文献+

Virtual sample generation for model-based prognostics and health management of on-board high-speed train control system

下载PDF
导出
摘要 In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.
出处 《High-Speed Railway》 2023年第3期153-161,共9页 高速铁路(英文)
基金 supported by National Natural Science Foundation of China(U2268206,T2222015) Beijing Natural Science Foundation(4232031) Key Fields Project of DEGP(2021ZDZX1110) Shenzhen Science and Technology Program(CJGJZD20220517141801004).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部