期刊文献+

基于自适应高斯模型和运动能量的异常行为识别 被引量:1

Abnormal Behavior Recognition Based on Adaptive Gaussian Model and Motion Energy
下载PDF
导出
摘要 为有效识别监控视频中的群体异常行为,提出一种基于自适应高斯模型和运动能量的异常行为识别方法。将自适应帧间差分法融入混合高斯模型中,对运动目标进行提取,计算行为发生个体的动态能量,利用行为发生各方的位置关系计算出交互能量,最终计算出异常行为事件的整体能量总值,从而实现群体异常行为的有效识别。实验结果表明,该文算法对人群异常行为具有较好的识别效果,算法实时性较好,具有一定的应用推广价值。 To effectively identify group abnormal behavior in surveillance videos,a method for identifying abnormal behavior based on adaptive Gaussian model and motion energy is proposed.Integrating the adaptive inter frame difference method into a mixed Gaussian model,extracting moving targets,calculating the dynamic energy of individuals involved in behavior,utilizing the positional relationships of all parties involved in behavior to calculate interaction energy,and ultimately calculating the overall energy total of abnormal behavior events,thus achieving effective identification of group abnormal behavior.The experimental results show that the algorithm proposed in this paper has good recognition performance for group abnormal behavior,and has good real-time performance,which has certain application and promotion value.
作者 赵雪章 吴嘉怡 席运江 ZHAO Xuezhang;WU Jiayi;XI Yunjiang(Electronic Information School,Foshan Polytechnic,Foshan 528137,China;School of Business Administration,South China University of Technology,Guangzhou 510641,China)
出处 《现代信息科技》 2023年第19期79-82,88,共5页 Modern Information Technology
基金 国家自然科学基金项目(72171090) 广东省教育厅创新类项目(2019GKTSCX119) 广东省教育厅教育教学改革研究与实践项目(GDJG2019023)。
关键词 高斯模型 运动能量 异常行为 Gaussian model motion energy abnormal behavior
  • 相关文献

参考文献4

二级参考文献38

  • 1沈美丽,宋华军.基于角点检测的光流目标跟踪算法[J].电子器件,2007,30(4):1397-1399. 被引量:9
  • 2王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013.
  • 3Popoola 0 P, Wang K. Video-Based Abnormal Human Behavior Recognition--A Review[J]. Systems,Man,and Cybernetics--Part C:Applications And Reviews,2012,42(6) :65-878.
  • 4Ying L, Jiulun F. Review of Intelligent Video Surveillance with Single Camera [ C ]//4th International Conference on Machine Vision(ICMV)--Machine Vision, Image Processing and Pattern A-nalysis, 2011,8349: 23 -25.
  • 5Oyama A,Shah M. Abnormal Crowd Behavior Detection Using So- cial Force Model [ J]. Computer Visionand Pattem Recognition, 2009,1 (4) : 935 -942.
  • 6Haidar Sharif M, Djeraba C. An Entropy Approach for Abnormal Activities Detection in Video Streams [ J ]. Pattern Recognition, 2012,45(7) :2543-2561.
  • 7Xiong G, Cheng J, Wu X. An Energy Model Approach to People Counting for Abnormal Crowd Behavior Detection [ J]. Neurocom- puting,2012,83 : 121-135.
  • 8Zivkovic Z, Improved Adaptive Gaussian Mixture Model for Back- ground SubtraCtion [ C ]//Proceedings of the 17th Internatiolal Conference on Pattern Recognition ,2004:28-31.
  • 9Simon B, Daniel S. A Database and Evaluation Methodology for Optical Flow[ J]. International Journal of Computer Vision. March 2011,92( 1 ) : 1-31.
  • 10Gunnar F. Two-Frame Motion Estimation Based on Polynomial Ex- pansion[ J ]. Lecture Notes in Computer Science, 2003, 2749: 3-370.

共引文献32

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部