摘要
随着用户行为数据和商品数据呈指数级增长,互联网平台面临严重的信息过载问题。可以在推荐算法中引入点击率预测模型,有效提升用户的购物体验。将特征协同交互网络(Co-Action Network,CAN)与深度兴趣演化模型(Deep Interest Network,DIN)相融合,挖掘用户与商品的深层次关系,模拟真实场景下用户与商品的交互情况,得到商品点击率预估模型CAN-DIN。在公开数据集Amazon-beauty上的实验表明,与相关基模型相比,CAN-DIN算法的准确率有一定的提升,可以应用于电商推荐场景。
With the exponential growth of user behavior data and goods data,internet platforms are facing serious information overload issues.A click-through rate prediction model can be introduced into recommendation algorithms to effectively improve users'shopping experience.By integrating the Co-Action Network(CAN)with the Deep Interest Network(DIN),explore the deep relationships between users and goods,simulate the interaction between users and goods in real scenarios,and obtain the goods click-through rate prediction model CAN-DIN.Experiments on the publicly available dataset Amazon-beauty have shown that the CAN-DIN algorithm has a certain improvement in accuracy compared to relevant base models and can be applied to E-commerce recommendation scenarios.
作者
邹雨菲
杨欣
胡陈陈
ZOU Yufei;YANG Xin;HU Chenchen(Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《现代信息科技》
2023年第19期145-150,共6页
Modern Information Technology
关键词
特征交互
点击率预估
深度神经网络
feature interaction
click-through rate estimation
deep neural network