期刊文献+

基于测量误差的Fay-Herriot模型在小域估计中的应用研究 被引量:2

Application of Fay-Herriot Model Based on Measurement Error in Small Area Estimation
下载PDF
导出
摘要 Fay-Herriot模型是常用的小域估计模型方法之一。但传统的Fay-Herriot模型未能考虑模型中辅助信息的测量误差问题,这将会影响目标估计量的估计精度。考虑到辅助信息中可能出现测量误差的情形,构建适应性更佳的基于测量误差的Fay-Herriot模型来进行小域估计。首先,利用结构误差模型来关联小域直接估计量和辅助信息,将小域估计模型转化为测量误差模型;其次,采用广义最小二乘法得到小域目标参数的最优线性无偏估计;最后,利用迭代广义最小二乘法来估计模型的未知参数。该模型不仅解决了辅助信息测量误差方差计算困难的问题,同时也提高了小域估计量的稳定性。数值模拟结果显示,与其他Fay-Herriot估计量相比,在辅助信息存在测量误差的小域中,基于测量误差模型的Fay-Herriot估计量均方误差普遍较小,表现也更为稳健。 Fay-Herriot model is one of the commonly used small area estimation methods.However,the traditional Fay-Herriot model fails to consider the measuring error of auxiliary information,that may affect the precision of target estimator.Considering the possible measuring error of auxiliary information,it has vital practical significance that a better adaptive Fay-Herriot model based on measuring error is constructed in small area estimation.Firstly,it links the small area direct estimator and the auxiliary information with the structural error model.Therefore,the model for small area estimation can be regarded as a measuring error model.Secondly,the generalized least square method is used to obtain the best linear unbiased predictor of the small area parameter.Finally,the iterative generalized least square method is used to estimate the parameters.The model not only solves the difficulties of calculating the measuring error variance of auxiliary information,but also improves the stability of small area estimator.The numerical simulation and analysis show that,compared with other Fay-Herriot estimators,the mean square error of the Fay-Herriot estimator based on measuring error is generally slighter and more stable.
作者 罗薇 贺建风 谢贤芬 LUO Wei;HE Jianfeng;XIE Xianfen(School of Management,Guangdong University of Technology,Guangzhou 510520,China;School of Economics and Finance,South China University of Technology,Guangzhou 510006,China;School of Economics,Jinan University,Guangzhou 510632,China)
出处 《统计与信息论坛》 CSSCI 北大核心 2023年第12期3-13,共11页 Journal of Statistics and Information
基金 国家社会科学基金项目“住户调查一体化设计方法及其应用研究”(17BTJ037) 国家社会科学基金项目“大数据背景下随机抽样技术及模型辅助估计方法研究”(19BTJ022) 全国统计科学研究重大项目“大数据背景下抽样调查方法的改进及其应用研究”(2020LD02) 广东省哲学社会科学研究项目“粤港澳大湾区战略下区域经济融合发展研究”(GD19CGL34)。
关键词 Fay-Herriot模型 测量误差 小域估计 结构误差模型 广义最小二乘估计 Fay-Herriot model measurement error small area estimation structure error model generalized least squares estimation
  • 相关文献

参考文献5

二级参考文献27

  • 1冯士雍.抽样调查应用与理论中的若干前沿问题[J].统计与信息论坛,2007,22(1):5-13. 被引量:39
  • 2Rao J N K. Small Area Estimation[M]. New York: Wiley,2003.
  • 3Wu Changbao, Sitter Randy R. A model-calibration approach to using complete auxiliary inforamation from survey data[J]. Journal of the American Statistical Association, 2001, 96(453) :185 - 193.
  • 4Chandra H, Chambers R L. Comparing EBLUP and CEBLUP for small area estimation[ J ]. Statistics in Transition, 2005( 7): 637- 648.
  • 5Shao J, Tu D. The jackknife and bootstrape[M]. New York:Springer-verlag, 1992.
  • 6Rust K F,Rao J N K. Variance estimation for complex surveys using replication techniques[J]. Statistical Methods in Medical Research, 1996(5) :283 - 310.
  • 7Ghosh M. Rao J N K. Small area estimation: an appraisal (with discussion) [J]. Statistical Science, 1994(9) :65 - 93.
  • 8Marker D A. Organization of small area estimators using a generalized linear regression framework [J].Journal of Official Statistics, 1999(15) : 1 - 24.
  • 9Fay R E, Herriot R. Estimates of income for small places: An application of JamesStein procedures to census data[J ], J. Am. Statist. Ass., 1979(74) :269 - 277.
  • 10Datta G, Rao J N K, Smith D D. On measuring the variability of small area estimators under a basic area level model[J]. Biometrika, 2005(92): 183 - 196.

共引文献15

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部