摘要
为提高核反应堆预测控制求解最优控制律的效率和准确性,将堆芯预测模型拓展为冷却剂平均温度预测模型,基于自适应混沌粒子群算法,结合反应性增量约束条件和在线参数辨识对预测控制系统进行滚动优化,最终实现冷却剂平均温度的预测控制。通过MATLAB平台进行模型仿真,实验结果表明,滚动优化过程中改进的混沌粒子群算法能够快速、准确地寻优;在负荷升、降过程中,该控制方法也保证了冷却剂平均温度快速、精准地跟踪设定值变化。
In order to improve the efficiency and accuracy of nuclear reactor predictive control to solve the optimal control law,the core prediction model is extended to the coolant average temperature prediction model.Based on the adaptive chaotic particle swarm optimization(ACPSO),combined with the reactivity increment constraint conditions and online parameter identification,the predictive control system performed rolling optimization,which realized the predictive control of the average coolant temperature.Simulation on the MATLAB platform was carried out.The results show that the improved ACPSO can quickly and accurately find the optimization during the rolling optimization process.During the load rise and fall,the control method also ensures that the average coolant temperature can track the set value quickly and accurately.
作者
张龙
陈传奇
张凯文
Zhang Long;Chen Chuanqi;Zhang Kaiwen(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处
《计算机应用与软件》
北大核心
2023年第11期80-86,共7页
Computer Applications and Software
基金
上海市科委地方能力建设项目(18020500900)
上海市自然科学基金项目(19ZR1420700)。