摘要
针对传统在线学习方法受到海量相似数据干扰,导致学生学习效率较低的问题,提出了基于人工智能的学生互动式在线学习方法研究。设计人工智能总体框架,研究通用化基本交互前端模块和后台模块。确定学生服务对象,从数据库中选择适用于数据挖掘的数据;通过数据预处理、数据转换、数据聚类、互动数据,保证相似数据全部收敛,避免学习行为建模挖掘中存在相似数据,完成人工智能学习模块设计。实验结果表明,该学习方法在无干扰数据和大量干扰数据环境下,具有90%以上的学习效率,为培养高素质学生提供了技术支持。
To improve the low learning efficiency of students due to the interference of massive similar data in traditional online learning methods,a student interactive online learning method based on artificial intelligence is proposed.The overall framework of artificial intelligence is designed to study the general basic interactive front-end module and background module.Then,the student service object is determined,and the suitable data for data mining is selected from the database.Through data preprocessing,data conversion,data clustering and interactive data,all similar data convergence is ensured and avoid similar data in learning behavior modeling and mining,which complete the design of artificial intelligence learning model.The experiment results show that the learning efficiency of this method is more than 90%in the environment of no interference data and a large number of interference data,providing technical support for cultivating high-quality students.
作者
李停
LI Ting(Shaanxi University of Chinese Medicine,Xianyang 712046,Shaanxi Province,China)
出处
《信息技术》
2023年第10期96-100,105,共6页
Information Technology
关键词
人工智能
学生互动式
在线学习
数据驱动
数据聚类
Artificial Intelligence
student interaction
online learning
data driven
data clustering