摘要
在复杂的电力系统中,用电设备故障的预测与诊断仍然是一个极具挑战性的问题。探索一种基于智能电网的用电设备故障预测与诊断技术,以提高电力系统的可靠性和安全性。为了达到这一目的,采用了数据驱动的方法来分析大量的用电设备运行数据,收集了大量的历史数据,运用机器学习算法对这些数据进行分析和建模,以识别潜在的故障模式与趋势。结果表明,通过监测和分析用电设备的运行数据,工作人员可以及时发现潜在的故障迹象,并采取相应的措施来避免设备故障,从而提高电力系统的可靠性和安全性。此外,将机器学习算法应用于用电设备故障预测与诊断可以帮助工作人员更好地理解故障发生的原因,并为维修和维护工作提供有针对性的建议。
In complex power systems,the prediction and diagnosis of electrical equipment faults remains a highly challenging issue.The purpose of this study is to explore a smart grid based fault prediction and diagnosis technology for electrical equipment,in order to improve the reliability and safety of the power system.To achieve this goal,a data-driven approach was adopted to analyze a large amount of operating data of electrical equipment,collect a large amount of historical data,and use machine learning algorithms to analyze and model these data to identify potential fault modes and trends.The results indicate that by monitoring and analyzing the operational data of electrical equipment,staff can promptly identify potential signs of failure and take corresponding measures to avoid equipment failures,thereby improving the reliability and safety of the power system.Secondly,applying machine learning algorithms to fault prediction and diagnosis of electrical equipment can help staff better understand the causes of faults and provide targeted recommendations for repair and maintenance work.
作者
王金利
WANG Jinli(State Grid Hebei Electric Power Co.,Ltd.,Gucheng County Power Supply Branch,Hengshui 253800,China)
出处
《通信电源技术》
2023年第19期269-271,共3页
Telecom Power Technology
关键词
智能电网
用电设备
故障预测
诊断技术
smart grid
electrical equipment
fault prediction
diagnostic techniques