摘要
针对现有单向环形设备布局方法不考虑需求变化的影响,导致所得方案在不确定需求下造成零件运输次数增多等问题,提出一种考虑不确定需求下的单向环形设备动态布局方法。以产品重载入运输成本和设备重布局费用综合最小化为优化目标建立数学模型,并提出一种改进遗传光学算法。在算法中,根据问题特点设计多阶段随机键编码和多阶段排序解码策略,采用阶段内和阶段间交叉算子,并在原遗传光学算法基础上,增加莱维飞行以提高算法寻优能力。通过实例计算,验证了所提算法的有效性,结果表明所提动态布局方法相比静态布局方法可节约68.73%的成本。
In response to the problem that the existing unidirectional loop facility methods ignore the impact of demand changes,resulting in the increased number of parts transportation under uncertain demand,a dynamic layout method considering uncertain demand is proposed.With the objectives of minimizing the total costs of parts reloading transportation and facility reallocation,a mathematical model is constructed and an improved genetic optical algorithm is developed to solve the model.In the algorithm design,multi-stage random key coding and multi-stage sorting decoding strategies are designed according to the characteristics of the problem.The crossover operators are developed within and between stages.Levy flight is added on the basis of the original genetic optical algorithm to improve the optimization ability of the algorithm.The effectiveness of the proposed algorithm is verified by the practical case calculation.The results show that the proposed dynamic layout method can reduce the costs by 68.73%compared with the static layout method.
作者
张家骅
ZHANG Jiahua(Department of Mechatronics Engineering,Wuxi Vocational Institute of Arts and Technology,Yixing 214206,China)
出处
《现代制造工程》
CSCD
北大核心
2023年第11期12-18,共7页
Modern Manufacturing Engineering
基金
中国轻工业联合会教育工作分会2020年度立项课题项目(QGJY2020060)。
关键词
单向环型布局
设备动态布局
改进遗传光学算法
unidirectional loop facility
dynamic layout method
improved genetic optical algorithm